ERLANG

STDLIB

Copyright © 1997-2024 Ericsson AB. All Rights Reserved.
STDLIB 3.17.2.4
April 10, 2024

Copyright © 1997-2024 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

April 10, 2024

1.1 Introduction

1 STDLIB User's Guide

1.1 Introduction

1.1.1 Scope

The Standard Erlang Libraries application, STDLIB, is mandatory in the sense that the minimal system based on
Erlang/OTP consists of STDLIB and Kernel.

STDLIB contains the following functional aress:

e Erlang shell

e Command interface

e Query interface

* Interfaceto standard Erlang /O servers

« Interfaceto the Erlang built-in term storage BIFs

* Regular expression matching functions for strings and binaries
e Finite state machine

e Event handling

* Functionsfor the server of aclient-server relation

e Function to control applicationsin a distributed manner

e Start and control of slave nodes

e Operations on finite sets and relations represented as sets
e Library for handling binary data

» Disk-based term storage

e List processing

* Mapsprocessing

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language.

1.2 The Erlang I/O Protocol

The 1/O protocol in Erlang enables bi-directional communication between clients and servers.

e Thel/O serverisaprocessthat handlesthe requests and performsthe requested task on, for example, an 1/O device.
* Theclientisany Erlang process wishing to read or write data from/to the 1/O device.

The common 1/0 protocol has been present in OTP since the beginning, but has been undocumented and has also
evolved over the years. In an addendum to Robert Virding's rationale, the original 1/O protocol is described. This
section describes the current 1/O protocol.

Theoriginal 1/0 protocol was simple and flexible. Demandsfor memory efficiency and execution time efficiency have
triggered extensions to the protocol over the years, making the protocol larger and somewhat less easy to implement
than the original. It can certainly be argued that the current protocol is too complex, but this section describes how
it looks today, not how it should have looked.

Ericsson AB. All Rights Reserved.: STDLIB | 1

1.2 The Erlang 1/O Protocol

The basic ideas from the origina protocol still hold. The 1/0 server and client communicate with one single, rather
simplistic protocol and no server stateis ever present in the client. Any 1/O server can be used together with any client
code, and the client code does not need to be aware of the I/O device that the 1/O server communicates with.

1.2.1 Protocol Basics

As described in Robert's paper, 1/0 servers and clients communicate using i o_r equest /i o_repl y tuples as
follows:

{io request, From, ReplyAs, Request}
{io reply, ReplyAs, Reply}

Theclient sendsani o_r equest tupleto the I/O server and the server eventually sendsacorrespondingi o_r epl y
tuple.

 Fromisthepi d() of the client, the process which the I/O server sends the I/O reply to.

* Repl yAs can be any datum and is returned in the corresponding i o_r epl y. Thei o module monitors the the
I/0 server and uses the monitor reference as the Repl yAs datum. A more complicated client can have many
outstanding 1/0 regqueststo the same /O server and can use different references (or something el se) to differentiate
among the incoming 1/0 replies. Element Repl yAs isto be considered opaque by the 1/O server.

Noticethat the pi d() of the I/O server is not explicitly presentin tuplei o_r epl y. Thereply can be sent from
any process, not necessarily the actual 1/0 server.
 Request and Repl y are described below.

When an 1/O server receives an i 0_r equest tuple, it acts upon the Request part and eventually sends an
i o_reply tuplewith the corresponding Repl y part.

1.2.2 Output Requests

To output characters on an 1/0 device, the following Request sexist:

{put_chars, Encoding, Characters}
{put_chars, Encoding, Module, Function, Args}

 Encodi ngisuni code orl ati nl, meaning that the characters are (in case of binaries) encoded as UTF-8 or
ISO Latin-1 (pure bytes). A well-behaved /O server is also to return an error indication if list elements contain
integers > 255 when Encodi ngissettol ati nl.

Notice that this does not in any way tell how characters are to be put on the 1/O device or handled by the I/O
server. Different 1/O servers can handle the characters however they want, this only tells the I/O server which
format the data is expected to have. In the Modul e/Funct i on/Ar gs case, Encodi ng tells which format the
designated function produces.

Notice also that byte-oriented datais simplest sent using the 1SO Latin-1 encoding.

e Charact ers are the data to be put on the I/O device. If Encodi ng isl ati nl, thisisaniolist().If
Encodi ng is uni code, this is an Erlang standard mixed Unicode list (one integer in a list per character,
charactersin binaries represented as UTF-8).

e Modul e,Functi on,and Ar gs denoteafunctionthat iscalled to producethedata(likei o_I i b: f or mat / 2).

Ar gs isalist of arguments to the function. The function is to produce data in the specified Encodi ng. The I/
O server isto call thefunction asappl y(Mod, Func, Args) and put the returned data on the I/O device as
ifitwassentina{put _chars, Encodi ng, Characters} request. If the function returns anything else
than abinary or list, or throws an exception, an error isto be sent back to the client.

The /O server repliesto the client withani o_r epl y tuple, where element Repl y isone of:

2 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 The Erlang I/O Protocol

ok
{error, Error}

e Error describesthe error to the client, which can do whatever it wants with it. Thei o moduletypically
returnsit "asis".

1.2.3 Input Requests

To read characters from an 1/0O device, the following Request sexist:

{get until, Encoding, Prompt, Module, Function, ExtraArgs}

* Encodi ng denotes how data is to be sent back to the client and what data is sent to the function denoted by
Modul e/Funct i on/Ext r aAr gs. If the function supplied returns data as a list, the data is converted to this
encoding. If the function supplied returns data in some other format, no conversion can be done, and it is up to
the client-supplied function to return datain a proper way.

If Encodi ngisl ati nl, listsof integers0. . 255 or binaries containing plain bytes are sent back to the client
when possible. If Encodi ng isuni code, listswith integers in the whole Unicode range or binaries encoded in
UTF-8 are sent to the client. The user-supplied function always sees lists of integers, never binaries, but the list
can contain numbers > 255 if Encodi ng isuni code.

e Pronpt isalist of characters (not mixed, no binaries) or an atom to be output as a prompt for input on the I/O
device. Pr onpt isoftenignored by the /O server; if setto' ', it isawaysto beignored (and results in nothing
being written to the 1/0 device).

Ericsson AB. All Rights Reserved.: STDLIB | 3

1.2 The Erlang 1/O Protocol

 Mbodul e, Functi on, and Ext r aAr gs denote a function and arguments to determine when enough data is
written. The function is to take two more arguments, the last state, and a list of characters. The function is to
return one of:

{done, Result, RestChars}
{more, Continuation}

Resul t canbeany Erlangterm, butifitisal i st () ,thel/O server canconvertittoabi nar y() of appropriate
format before returning it to the client, if the 1/0 server is set in binary mode (see below).

The function is called with the data the 1/O server finds on its 1/O device, returning one of:

e {done, Result, RestChars} whenenoughdataisread. InthiscaseResul t issent totheclient and
Rest Char s iskept in the I/O server as a buffer for later input.

« {nore, Continuation},whichindicatesthat more characters are needed to complete the request.

Cont i nuat i on is sent as the state in later cals to the function when more characters are available. When no
more characters are available, the function must return { done, eof, Rest}. Theinitia state is the empty
list. The datawhen an end of fileis reached on the |O device isthe atom eof .

An emulation of theget _| i ne request can be (inefficiently) implemented using the following functions:

-module(demo) .
-export([until newline/3, get line/1]).

until newline(ThisFar,eof, MyStopCharacter) ->
{done,eof, [1};
until newline(ThisFar,CharList,MyStopCharacter) ->
case
lists:splitwith(fun(X) -> X =/= MyStopCharacter end, CharList)
of
{L, 11} ->
{more,ThisFar++L};
{L2, [MyStopCharacter|Rest]} ->
{done, ThisFar++L2++[MyStopCharacter],Rest}
end.

get line(IoServer) ->
IoServer ! {io request,

self(),
IoServer,
{get until, unicode, '', ?MODULE, until newline, [$\n]}},
receive
{io_reply, IoServer, Data} ->
Data
end.

Noticethat thelast element in the Request tuple ([$\ n]) is appended to the argument list when the functionis
called. Thefunctionistobecalledlikeappl y(Modul e, Function, [State, Data | ExtraArgs])
by the 1/O server.

A fixed number of charactersis requested using the following Request :

{get chars, Encoding, Prompt, N}

e« Encodi ng and Pronpt asforget _until.
¢ Nisthe number of charactersto be read from the I/O device.

A singleline (asin former example) is requested with the following Request :

4 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 The Erlang I/O Protocol

{get line, Encoding, Prompt}
* Encodi ng and Pronpt asforget _until.

Clearly, get _chars and get _| i ne could be implemented with the get _unt i | request (and indeed they were
originaly), but demands for efficiency have made these additions necessary.

The 1/O server repliesto the client with ani o_r epl y tuple, where element Repl vy is one of:

Data
eof
{error, Error}

» Dat aisthecharactersread, in list or binary form (depending on the 1/O server mode, see the next section).
e eof isreturned when input end is reached and no more data is available to the client process.

e Error describesthe error to the client, which can do whatever it wants with it. Thei o module typically returns
itasis.

1.2.4 1/O Server Modes

Demands for efficiency when reading data from an /O server has not only lead to the addition of theget | i ne and
get _char s requests, but has also added the concept of 1/0 server options. No options are mandatory to implement,
but al 1/O servers in the Erlang standard libraries honor the bi nar y option, which alows element Dat a of the
i 0_reply tupleto be abinary instead of alist when possible. If the data is sent as a binary, Unicode data is sent
in the standard Erlang Unicode format, that is, UTF-8 (notice that the function of theget _unti | request till gets
list data regardless of the 1/0O server mode).

Notice that the get _unti | request alows for a function with the data specified as aways being a list. Also, the
return value data from such afunction can be of any type (asisindeed the casewhen ani o: f r ead/ 2, 3 request is
senttoan 1/0 server). The client must be prepared for data received as answersto those requeststo bein variousforms.
However, the I/O server isto convert the results to binaries whenever possible (that is, when the function supplied to
get _until returnsalist). Thisisdonein the examplein section An Annotated and Working Example 1/0 Server.

An |/O server in binary mode affects the data sent to the client, so that it must be able to handle binary data. For
convenience, the modes of an I/O server can be set and retrieved using the following I/O requests:

{setopts, Opts}
e Optsisalist of optionsin the format recognized by the pr opl i st s module (and by the 1/0 server).
Asan example, the I/O server for the interactive shell (in gr oup. er |) understands the following options:

{binary, boolean()} (or binary/list)

{echo, boolean()}

{expand fun, fun()}

{encoding, unicode/latinl} (or unicode/latinl)

Options bi nary and encodi ng are common for al 1/0 serversin OTP, while echo and expand are valid only
for this1/O server. Option uni code notifies how characters are put on the physical 1/0 device, that is, if the terminal
itself is Unicode-aware. It does not affect how characters are sent in the 1/O protocol, where each request contains
encoding information for the provided or returned data.

The 1/O server isto send one of the following as Repl y:

Ericsson AB. All Rights Reserved.: STDLIB | 5

1.2 The Erlang 1/O Protocol

ok
{error, Error}

An error (preferably enot sup) is to be expected if the option is not supported by the I/O server (like if an echo
optionissentinaset opt s request to aplain file).

To retrieve options, the following request is used:

getopts

This request asks for acomplete list of al options supported by the I/O server aswell astheir current values.
The I/O server replies:

OptlList
{error, Error}

e OptlList isalist of tuples{ Opti on, Val ue}, where Opti on awaysisan atom.

1.2.5 Multiple I/0 Requests

The Request element can initself contain many Request s by using the following format:

{requests, Requests}

« Requestsisalistof vaidi o_request tuplesfor the protocol. They must be executed in the order that
they appear in the list. The execution isto continue until one of the requests resultsin an error or the list is
consumed. The result of the last request is sent back to the client.

Thel/O server can, for alist of requests, send any of the following valid resultsin the reply, depending on the requests
inthelist:

ok

{ok, Data}
{ok, Options}
{error, Error}

1.2.6 Optional I/0O Request

The following I/O request is optional to implement and a client isto be prepared for an error return:

{get geometry, Geometry}
e Ceonetry istheatomr ows or theatom col umms.
The 1/O server isto send the Repl y as:

{ok, N}
{error, Error}

* Nisthe number of character rows or columns that the 1/O device has, if applicable to the 1/O device handled by
the 1/O server, otherwise{ er r or, enot sup} isagood answer.

6 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 The Erlang I/O Protocol

1.2.7 Unimplemented Request Types

If an 1/O server encounters a request that it does not recognize (that is, thei o_r equest tuple has the expected
format, but the Request isunknown), the I/O server isto send avalid reply with the error tuple;

{error, request}

This makes it possible to extend the protocol with optional requests and for the clients to be somewhat backward
compatible.

1.2.8 An Annotated and Working Example I/O Server

An 1/O server is any process capable of handling the I/O protocol. There is no generic 1/0 server behavior, but could
well be. The framework is ssimple, a process handling incoming requests, usualy both 1/O-requests and other 1/0
device-specific requests (positioning, closing, and so on).

The example 1/O server stores charactersin an ETS table, making up afairly crude RAM file.
The module begins with the usua directives, afunction to start the I/O server and a main loop handling the requests:

-module(ets io server).
-export([start link/0, init/@, loop/1, until newline/3, until enough/31]).
-define(CHARS PER REC, 10).

-record(state, {
table,
position, % absolute
mode % binary | list
b

start _link() ->
spawn_link(?MODULE,init,[]).

init() ->
Table = ets:new(noname, [ordered set]),

?MODULE: loop (#state{table = Table, position 0, mode=list}).

loop(State) ->
receive
{io_request, From, ReplyAs, Request} ->
case request(Request,State) of
{Tag, Reply, NewState} when Tag =:= ok; Tag =:
reply(From, ReplyAs, Reply),
?MODULE: loop (NewState);
{stop, Reply, NewState} ->
reply(From, ReplyAs, Reply),
exit(Reply)
end;
%% Private message
{From, rewind} ->
From ! {self(), ok},
?MODULE: loop (State#state{position = 0});
_Unknown ->
?MODULE: loop(State)
end.

error ->

The main loop receives messages from the client (which can usethethei o moduleto send requests). For each request,
thefunction r equest / 2 iscalled and areply is eventually sent using functionr epl y/ 3.

Ericsson AB. All Rights Reserved.: STDLIB | 7

1.2 The Erlang 1/O Protocol

The "private" message { From rewi nd} results in the current position in the pseudo-file to be reset to 0 (the
beginning of the "file"). Thisis atypical example of 1/0O device-specific messages not being part of the 1/O protocol.
It isusually abad ideato embed such private messagesini o_r equest tuples, asthat can confuse the reader.

First, we examine the reply function:

reply(From, ReplyAs, Reply) ->
From ! {io reply, ReplyAs, Reply}.

It sendsthei o_r epl y tuple back to the client, providing element Repl yAs received in the request along with the
result of the request, as described earlier.

We need to handle some requests. First the requests for writing characters:

request({put_chars, Encoding, Chars}, State) ->
put_chars(unicode:characters to list(Chars,Encoding),State);
request({put _chars, Encoding, Module, Function, Args}, State) ->
try
request({put_chars, Encoding, apply(Module, Function, Args)}, State)
catch
i ->
{error, {error,Function}, State}
end;

The Encodi ng says how the characters in the request are represented. We want to store the characters as listsin
the ETS table, so we convert them to lists using function uni code: characters_to | i st/ 2. The conversion
function conveniently accepts the encoding typesuni code and| at i n1, so we can use Encodi ng directly.

When Modul e, Functi on, and Ar gunent s are provided, we apply it and do the same with the result as if the
data was provided directly.

We handle the requests for retrieving data:

request({get until, Encoding, Prompt, M, F, As}, State) ->
get until(Encoding, M, F, As, State);
request({get chars, Encoding, Prompt, N}, State) ->
%% To simplify the code, get chars is implemented using get until
get until(Encoding, ?MODULE, until enough, [N], State);
request({get line, Encoding, Prompt}, State) ->
%% To simplify the code, get line is implemented using get until
get until(Encoding, ?MODULE, until newline, [$\n], State);

Herewe have cheated alittle by more or lessonly implementingget _unt i | and using internal hel persto implement
get _chars and get _I i ne. In production code, this can be inefficient, but that depends on the frequency of the
different requests. Before we start implementing functionsput _char s/ 2 andget _unti | / 5, weexaminethefew
remaining requests:

request({get geometry, }, State) ->
{error, {error,enotsup}, State};
request({setopts, Opts}, State) ->
setopts(Opts, State);
request(getopts, State) ->
getopts(State);
request({requests, Reqs}, State) ->
multi request(Reqs, {ok, ok, State});

Request get _geonet r y hasno meaning for this1/O server, sothereplyis{ error, enot sup}.Theonly option
we handleisbi nar y/l i st , whichisdonein separate functions.

The multi-request tag (r equest s) is handled in a separate loop function applying the requests in the list one after
another, returning the last result.

{error, request} must bereturned if the request is not recognized:

8 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 The Erlang I/O Protocol

request(Other, State) ->
{error, {error, request}, State}.

Next we handle the different requests, first the fairly generic multi-request type:

multi request([R|Rs], {ok, Res, State}) ->
multi request(Rs, request(R, State));
multi request([| 1, Error) ->
Error;
multi request([], Result) ->
Result.

We loop through the requests one at the time, stopping when we either encounter an error or the list is exhausted.
The last return value is sent back to the client (it is first returned to the main loop and then sent back by function

io_reply).
Requests get opt s and set opt s are also simpleto handle. We only change or read the state record:

setopts(Opts0,State) ->
Opts = proplists:unfold(
proplists:substitute negations(
[{list,binary}],
Opts0)),
case check valid opts(Opts) of
true ->
case proplists:get value(binary, Opts) of
true ->
{ok,ok,State#state{mode=binary}};
false ->
{ok,ok,State#state{mode=binary}};
->
{ok,ok,State}
end;
false ->
{error,{error,enotsup},State}
end.
check valid opts([]) ->
true;
check valid opts([{binary,Bool}|T]) when is boolean(Bool) ->
check valid opts(T);
check valid opts() ->
false.

getopts (#state{mode=M} = S) ->
{ok, [{binary, case M of
binary ->
true;
>

e
end}],S}.

As a convention, al 1/0O servers handle both {setopts, [binary]}, {setopts, [list]}, and

{setopts,[{binary, boolean()}]}, hencethetrick with proplists:substitute_negations/2

and propl i st s: unfol d/ 1. If invalid options are sent to us, wesend { err or, enot sup} back to theclient.

Request get opt s istoreturnalistof { Opt i on, Val ue} tuples. This hasthe twofold function of providing both
the current values and the available options of this1/O server. We have only one option, and hence return that.

So far this I/O server is fairly generic (except for request r ewi nd handled in the main loop and the creation of an
ETStable). Most I/O servers contain code similar to this one.

To make the example runnable, we start implementing the reading and writing of the datato/from the ETS table. First
function put _char s/ 3:

Ericsson AB. All Rights Reserved.: STDLIB | 9

1.2 The Erlang 1/O Protocol

put _chars(Chars, #state{table = T, position = P} = State) ->
R = P div ?CHARS PER REC,
C = P rem ?CHARS PER REC,
[apply update(T,U) || U <- split data(Chars, R, C) 1,
{ok, ok, State#state{position = (P + length(Chars))}}.

We aready have the data as (Unicode) lists and therefore only split the list in runs of a predefined size and put
each run in the table at the current position (and forward). Functionsspl i t _dat a/ 3 andappl y_updat e/ 2 are
implemented below.

Now we want to read data from the table. Function get _unt i | / 5 reads data and applies the function until it says
that it is done. The result is sent back to the client:

get until(Encoding, Mod, Func, As,
#state{position = P, mode = M, table = T} = State) ->
case get loop(Mod,Func,As,T,P,[]) of
{done,Data, ,NewP} when is binary(Data); is list(Data) ->
if
M =:= binary ->
{ok,
unicode:characters to binary(Data, unicode, Encoding),
State#state{position = NewP}};
true ->
case check(Encoding,
unicode:characters to list(Data, unicode))
of
{error, } =E ->
{error, E, State};
List ->
{ok, List,
State#state{position = NewP}}
end
end;
{done,Data, ,NewP} ->
{ok, Data, State#state{position = NewP}};
Error ->
{error, Error, State}
end.

get loop(M,F,A,T,P,C) ->
{NewP,L} = get(P,T),
case catch apply(M,F,[C,L|A]) of
{done, List, Rest} ->
{done, List, [], NewP - length(Rest)};
{more, NewC} ->
get loop(M,F,A,T,NewP,NewC);
->
{error,F}
end.

Hereweaso handlethemode (bi nary orl i st)that canbeset by request set opt s. By default, all OTP1/O servers
send data back to the client as lists, but switching mode to bi nar y can increase efficiency if the I/O server handles
it in an appropriate way. The implementation of get _unt i | isdifficult to get efficient, as the supplied function is
defined to take lists as arguments, but get _char s and get _| i ne can be optimized for binary mode. However,
this example does not optimize anything.

It is important though that the returned datais of the correct type depending on the options set. We therefore convert
the lists to binaries in the correct encoding if possible before returning. The function supplied in the get _unt i |

request tuple can, asitsfinal result return anything, so only functions returning lists can get them converted to binaries.
If the request contains encoding tag uni code, thelists can contain al Unicode code points and the binaries are to be
inUTF-8. If theencodingtagisl at i nl,theclientisonly to get charactersintherangeO. . 255. Functioncheck/ 2

10 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 The Erlang I/O Protocol

takes care of not returning arbitrary Unicode code points in lists if the encoding was specified as| ati nl. If the
function does not return alist, the check cannot be performed and the result is that of the supplied function untouched.

To manipulate the table we implement the following utility functions:

check(unicode, List) ->
List;

check(latinl, List) ->
try

[throw(not unicode) || X <- List,

X > 2551,

List
catch

throw: ->

{error, {cannot convert, unicode, latinl}}

end.

The function check provides an error tuple if Unicode code points > 255 are to be returned if the client requested
latinl.

The two functions until _new ine/3 and until_enough/ 3 are helpers used together with function
get _until/5toimplement get _chars andget _I i ne (inefficiently):

until newline([],eof, MyStopCharacter) ->
{done,eof, [1};

until newline(ThisFar,eof, MyStopCharacter) ->
{done, ThisFar,[1};

until newline(ThisFar,CharList,MyStopCharacter) ->
case

lists:splitwith(fun(X) -> X =/= MyStopCharacter end, CharList)

of

{L, 11} ->

{more,ThisFar++L};
{L2, [MyStopCharacter|Rest]} ->
{done,ThisFar++L2++[MyStopCharacter],Rest}

end.

until enough([],eof, N) ->
{done,eof,[]1};

until enough(ThisFar,eof, N) ->
{done, ThisFar, [1};

until enough(ThisFar,CharList,N)

when length(ThisFar) + length(CharList) >= N ->

{Res,Rest} = my split(N,ThisFar ++ CharList, []),
{done,Res,Rest};

until enough(ThisFar,CharList, N) ->
{more,ThisFar++CharList}.

As can be seen, the functions above are just the type of functions that are to be providedinget _unt i | requests.
To complete the I/O server, we only need to read and write the table in an appropriate way:

Ericsson AB. All Rights Reserved.: STDLIB | 11

1.3 Using Unicode in Erlang

get(P,Tab) ->
R = P div ?CHARS PER REC,
C = P rem ?CHARS PER REC,
case ets:lookup(Tab,R) of
[1->
{P,eof};
[{R,List}] ->
case my split(C,List,[]) of
{11} ->
{P+length(List),eof};
{ ,Data} ->
{P+length(Data),Data}
end
end.

my split(0,Left,Acc) ->
{lists:reverse(Acc),Left};
my split(,[],Acc) ->
{lists:reverse(Acc),[1};
my split(N,[H|T],Acc) ->
my split(N-1,T,[H|Acc]).

split data([], ,) ->
[1;

split data(Chars, Row, Col) ->
{This,Left} = my split(?CHARS PER REC - Col, Chars, []),
[{Row, Col, This} | split data(Left, Row + 1, 0) 1.

apply update(Table, {Row, Col, List}) ->
case ets:lookup(Table,Row) of
[1->
ets:insert(Table, {Row, lists:duplicate(Col,0) ++ List});
[{Row, OldData}] ->
{Partl, } = my split(Col,OldData,[]),
{ ,Part2} = my split(Col+length(List),0ldData,[]),
ets:insert(Table,{Row, Partl ++ List ++ Part2})
end.

The table is read or written in chunks of ?CHARS PER REC, overwriting when necessary. The implementation is
clearly not efficient, it isjust working.

This concludes the example. It isfully runnable and you can read or write to the 1/O server by using, for example, the
i 0 module or eventhef i | e module. Itisassimple asthat to implement afully fledged I/O server in Erlang.

1.3 Using Unicode in Erlang

1.3.1 Unicode Implementation

Implementing support for Unicode character setsis an ongoing process. The Erlang Enhancement Proposal (EEP) 10
outlined the basics of Unicode support and specified a default encoding in binaries that all Unicode-aware modules
areto handlein the future.

Hereis an overview what has been done so far:

* Thefunctionality described in EEP10 was implemented in Erlang/OTP R13A.

e Erlang/OTP R14B01 added support for Unicode filenames, but it was not complete and was by default disabled
on platforms where no guarantee was given for the filename encoding.

* With Erlang/OTP R16A came support for UTF-8 encoded source code, with enhancements to many of
the applications to support both Unicode encoded filenames and support for UTF-8 encoded files in many

12 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

circumstances. Most notableisthe support for UTF-8infilesread by f i | e: consul t / 1, release handler support
for UTF-8, and more support for Unicode character setsin the I/O system.

e InErlang/OTP 17.0, the encoding default for Erlang source files was switched to UTF-8.

e InErlang/OTP 20.0, atoms and function can contain Unicode characters. Module names, application names, and
node names are still restricted to the ISO Latin-1 range.

Support was added for normalizations formsin uni code and the st r i ng module now handles utf8-encoded
binaries.

This section outlines the current Unicode support and gives some recipes for working with Unicode data.

1.3.2 Understanding Unicode

Experience with the Unicode support in Erlang has made it clear that understanding Unicode characters and encodings
isnot as easy as one would expect. The complexity of the field and the implications of the standard require thorough
understanding of concepts rarely before thought of.

Also, the Erlang implementation requires understanding of concepts that were never an issue for many (Erlang)
programmers. To understand and use Unicode characters requires that you study the subject thoroughly, even if you
are an experienced programmer.

Asan example, contemplate the issue of converting between upper and lower case |etters. Reading the standard makes
you realize that thereis not a simple one to one mapping in all scripts, for example:

* InGerman, theletter "[3' (sharp s) isin lower case, but the uppercase equivaent is"SS".

* InGreek, theletter "#"' has two different lowercase forms, "#" in word-final position and "#" elsewhere.
e InTurkish, both dotted and dotless "i" exist in lower case and upper case forms.

e Cyrillic"I" has usualy no lowercase form.

» Languages with no concept of upper case (or lower case).

So, a conversion function must know not only one character at atime, but possibly the whole sentence, the natural
language to trandate to, the differences in input and output string length, and so on. Erlang/OTP has currently no
Unicode upper case/l ower case functionality with language specific handling, but publicly available libraries
address these issues.

Another example is the accented characters, where the same glyph has two different representations. The Swedish
letter "6" is one example. The Unicode standard has a code point for it, but you can also write it as 0" followed by
"U+0308" (Combining Diaeresis, with the simplified meaning that the last letter isto have "™ above). They have the
same glyph, user perceived character. They are for most purposes the same, but have different representations. For
example, MacOS X converts al filenamesto use Combining Diaeresis, while most other programs (including Erlang)
try to hide that by doing the opposite when, for example, listing directories. However it isdone, it is usually important
to normalize such charactersto avoid confusion.

The list of examples can be made long. One need a kind of knowledge that was not needed when programs only
considered one or two languages. The complexity of human languages and scripts has certainly made this a challenge
when constructing a universal standard. Supporting Unicode properly in your program will require effort.

1.3.3 What Unicode Is

Unicode is astandard defining code points (numbers) for al known, living or dead, scripts. In principle, every symbol
used in any language has a Unicode code point. Unicode code points are defined and published by the Unicode
Consortium, which is a non-profit organization.

Support for Unicode isincreasing throughout the world of computing, asthe benefits of one common character set are
overwhelming when programs are used in aglobal environment. Along with the base of the standard, the code points
for all the scripts, some encoding standar ds are available.

Ericsson AB. All Rights Reserved.: STDLIB | 13

1.3 Using Unicode in Erlang

Itisvital to understand the difference between encodings and Unicode characters. Unicode characters are code points
according to the Unicode standard, while the encodings are ways to represent such code points. An encoding isonly a
standard for representation. UTF-8 can, for example, be used to represent avery limited part of the Unicode character
set (for example | SO-Latin-1) or the full Unicode range. It is only an encoding format.

As long as all character sets were limited to 256 characters, each character could be stored in one single byte, so
there was more or less only one practical encoding for the characters. Encoding each character in one byte was so
common that the encoding was not even named. With the Unicode system there are much more than 256 characters, so
acommon way is needed to represent these. The common ways of representing the code points are the encodings. This
means awhole new concept to the programmer, the concept of character representation, which was anon-issue earlier.

Different operating systems and tools support different encodings. For example, Linux and MacOS X have chosen
the UTF-8 encoding, which is backward compatible with 7-bit ASCII and therefore affects programs written in plain
English the least. Windows supports alimited version of UTF-16, namely all the code planes where the characters can
be stored in one single 16-bit entity, which includes most living languages.

The following are the most widely spread encodings:
Bytewise representation

Thisisnot aproper Unicoderepresentation, but the representation used for charactersbefore the Unicode standard.
It can still be used to represent character code pointsin the Unicode standard with numbers < 256, which exactly
corresponds to the ISO Latin-1 character set. In Erlang, thisis commonly denoted | at i n1 encoding, which is
dlightly misleading as SO Latin-1 is a character code range, not an encoding.

UTF-8

Each character is stored in one to four bytes depending on code point. The encoding is backward compatible
with bytewise representation of 7-bit ASCII, as all 7-bit characters are stored in one single byte in UTF-8. The
characters beyond code point 127 are stored in more bytes, letting the most significant bit in the first character
indicate a multi-byte character. For details on the encoding, the RFC is publicly available.

Notice that UTF-8 is not compatible with bytewise representation for code points from 128 through 255, so an
SO Latin-1 bytewise representation is generally incompatible with UTF-8.

UTF-16

Thisencoding has many similaritiesto UTF-8, but the basic unit isa 16-bit number. Thismeansthat all characters
occupy at least two bytes, and some high numbers four bytes. Some programs, libraries, and operating systems
claimingtouse UTF-16 only allow for charactersthat can be stored in one 16-bit entity, which isusually sufficient
to handleliving languages. Asthe basic unit is more than one byte, byte-order issues occur, whichiswhy UTF-16
existsin both abig-endian and alittle-endian variant.

In Erlang, the full UTF-16 rangeis supported when applicable, likeintheuni code moduleand in the bit syntax.
UTF-32

The most straightforward representation. Each character is stored in one single 32-bit number. There is no need
for escapes or any variable number of entities for one character. All Unicode code points can be stored in one
single 32-bit entity. Aswith UTF-16, there are byte-order issues. UTF-32 can be both big-endian and little-endian.

Ucs4

Basically the same as UTF-32, but without some Unicode semantics, defined by IEEE, and has little use as a
separate encoding standard. For all normal (and possibly abnormal) use, UTF-32 and UCS-4 are interchangeabl e.

Certain number ranges are unused in the Unicode standard and certain ranges are even deemed invalid. The most
notable invalid range is 16#D800-16#DFFF, as the UTF-16 encoding does not allow for encoding of these numbers.
This is possibly because the UTF-16 encoding standard, from the beginning, was expected to be able to hold all
Unicode charactersin one 16-bit entity, but wasthen extended, |eaving aholein the Unicode range to handl e backward
compatibility.

14 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

Code point 16#FEFF is used for Byte Order Marks (BOMs) and use of that character is not encouraged in other
contexts. It isvalid though, as the character "ZWNBS" (Zero Width Non Breaking Space). BOMs are used to identify
encodings and byte order for programs where such parameters are not known in advance. BOMs are more seldom
used than expected, but can become more widely spread as they provide the means for programs to make educated
guesses about the Unicode format of a certain file.

1.3.4 Areas of Unicode Support

To support Unicode in Erlang, problemsin various areas have been addressed. This section describes each area briefly
and more thoroughly later in this User's Guide.

Representation

To handle Unicode characters in Erlang, a common representation in both lists and binaries is needed. EEP (10)
and the subsequent initial implementation in Erlang/OTP R13A settled a standard representation of Unicode
charactersin Erlang.

Manipulation

The Unicode characters need to be processed by the Erlang program, which iswhy library functions must be able
to handle them. In some cases functionality has been added to already existing interfaces (asthe st r i ng module
now can handle strings with any code points). In some cases new functionality or options have been added (as
inthei o module, the file handling, the uni code module, and the bit syntax). Today most modulesin Kernel
and STDLIB, aswell asthe VM are Unicode-aware.

Filel/O

1/0 is by far the most problematic area for Unicode. A file is an entity where bytes are stored, and the lore of
programming hasbeen to treat characters and bytes asinterchangeabl e. With Unicode characters, you must decide
on an encoding when you want to store the data in afile. In Erlang, you can open atext file with an encoding
option, so that you can read characters from it rather than bytes, but you can also open afile for bytewise 1/O.

The Erlang 1/0-system has been designed (or at | east used) in away whereyou expect any 1/O server to handle any
string data. That is, however, no longer the case when working with Unicode characters. The Erlang programmer
must now know the capabilities of the device wherethe dataends up. Also, portsin Erlang are byte-oriented, so an
arbitrary string of (Unicode) characters cannot be sent to aport without first converting it to an encoding of choice.

Terminal 1/0O

Terminal 1/0O isdlightly easier than file 1/0. The output is meant for human reading and is usually Erlang syntax
(for example, in the shell). There exists syntactic representation of any Unicode character without displaying the
glyph (instead written as\ x{ HHH}). Unicode data can therefore usually be displayed even if the terminal as such
does not support the whole Unicode range.

Filenames

Filenames can be stored as Unicode strings in different ways depending on the underlying operating system and
file system. This can be handled fairly easy by aprogram. The problems arise when the file system isinconsistent
initsencodings. For example, Linux allowsfilesto be named with any sequence of bytes, leaving to each program
tointerpret those bytes. On systemswhere these "transparent” filenames are used, Erlang must be informed about
the filename encoding by a startup flag. The default is bytewiseinterpretation, which isusually wrong, but allows
for interpretation of all filenames.

The concept of "raw filenames" can be used to handlewrongly encoded filenamesif one enables Unicodefilename
tranglation (+f nu) on platforms where thisis not the default.

Ericsson AB. All Rights Reserved.: STDLIB | 15

1.3 Using Unicode in Erlang

Source code encoding

The Erlang source code has support for the UTF-8 encoding and bytewise encoding. The default in Erlang/OTP
R16B was bytewise (I at i n1) encoding. It was changed to UTF-8 in Erlang/OTP 17.0. You can control the
encoding by a comment like the following in the beginning of the file:

%% -*- coding: utf-8 -*-

This of course requires your editor to support UTF-8 aswell. The same comment is also interpreted by functions
likefile:consult/1, the release handler, and so on, so that you can have al text files in your source
directoriesin UTF-8 encoding.

The language

Having the source code in UTF-8 also allows you to write string literals, function names, and atoms containing
Unicode characters with code points > 255. M odule names, application names, and node names are still restricted
to the 1SO Latin-1 range. Binary literals, where you use type / ut f 8, can also be expressed using Unicode
characters > 255. Having module names or application names using characters other than 7-bit ASCII can
cause trouble on operating systems with inconsistent file naming schemes, and can hurt portability, so it is not
recommended.

EEP 40 suggests that the language is also to allow for Unicode characters > 255 in variable names. Whether to
implement that EEP is yet to be decided.

1.3.5 Standard Unicode Representation

In Erlang, strings are lists of integers. A string was until Erlang/OTP R13 defined to be encoded in the ISO Latin-1
(1SO 8859-1) character set, which is, code point by code point, a subrange of the Unicode character set.

The standard list encoding for strings was therefore easily extended to handle the whole Unicode range. A Unicode
string in Erlang is a list containing integers, where each integer is a valid Unicode code point and represents one
character in the Unicode character set.

Erlang stringsin 1SO Latin-1 are a subset of Unicode strings.

Only if a string contains code points < 256, can it be directly converted to a binary by using, for example,
erlang:iolist_to_binary/1 orcan be sent directly to a port. If the string contains Unicode characters >
255, an encoding must be decided upon and the string is to be converted to a binary in the preferred encoding using
uni code: characters_to_binary/ 1, 2, 3. Stringsarenot generally listsof bytes, asthey were before Erlang/
OTP R13, they arelists of characters. Characters are not generally bytes, they are Unicode code points.

Binaries are more troublesome. For performance reasons, programs often store textual datain binariesinstead of lists,
mainly because they are more compact (one byte per character instead of two words per character, as is the case
with lists). Using erl ang: | i st _to_bhi nary/ 1, an ISO Latin-1 Erlang string can be converted into a binary,
effectively using bytewise encoding: one byte per character. This was convenient for those limited Erlang strings, but
cannot be done for arbitrary Unicode lists.

Asthe UTF-8 encoding is widely spread and provides some backward compatibility in the 7-bit ASCII range, it is
selected as the standard encoding for Unicode charactersin binaries for Erlang.

The standard binary encoding is used whenever alibrary function in Erlang is to handle Unicode datain binaries, but
is of course not enforced when communicating externally. Functions and bit syntax exist to encode and decode both
UTF-8, UTF-16, and UTF-32 in binaries. However, library functions dealing with binaries and Unicode in general
only deal with the default encoding.

Character data can be combined from many sources, sometimes available in amix of strings and binaries. Erlang has
for long had the concept of i odat a ori ol i st s, where binaries and lists can be combined to represent a sequence
of bytes. In the same way, the Unicode-aware modules often alow for combinations of binaries and lists, where the

16 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

binaries have characters encoded in UTF-8 and the lists contain such binaries or numbers representing Unicode code
points:

unicode binary() = binary() with characters encoded in UTF-8 coding standard
chardata() = charlist() | unicode binary()

charlist() = maybe improper list(char() | unicode binary() | charlist(),
unicode binary() | nil())

The module uni code even supports similar mixes with binaries containing other encodings than UTF-8, but that is
aspecia caseto alow for conversions to and from external data:

external unicode binary() = binary() with characters coded in a user-specified
Unicode encoding other than UTF-8 (UTF-16 or UTF-32)

external chardata() = external charlist() | external unicode binary()

external charlist() = maybe improper list(char() | external unicode binary() |
external charlist(), external unicode binary() | nil())

1.3.6 Basic Language Support

As from Erlang/OTP R16, Erlang source files can be written in UTF-8 or bytewise (I ati nl) encoding. For
information about how to state the encoding of an Erlang source file, seethe epp(3) module. As from Erlang/OTP
R16, strings and comments can be written using Unicode. As from Erlang/OTP 20, also atoms and functions can be
written using Unicode. Modules, applications, and nodes must till be named using characters from the 1SO Latin-1
character set. (These restrictions in the language are independent of the encoding of the source file))

Bit Syntax

Thebit syntax containstypesfor handling binary datain thethree main encodings. Thetypesarenamedut f 8, ut f 16,
and ut f 32. Theut f 16 and ut f 32 types can be in abig-endian or alittle-endian variant:

<<Ch/utf8, /binary>> = Binl,

<<Ch/utfl16-little, /binary>> = Bin2,

Bin3 = <<$H/utf32-little, $e/utf32-little, $1/utf32-little, $1/utf32-little,
$o/utf32-little>>,

For convenience, literal strings can be encoded with a Unicode encoding in binaries using the following (or similar)
syntax:

Bin4 = <<"Hello"/utfl6>>,

String and Character Literals

For source code, there is an extension to syntax \ OOO (backdlash followed by three octal humbers) and \ xHH
(backslash followed by x, followed by two hexadecimal characters), namely \ x{ H ...} (backslash followed by x,
followed by left curly bracket, any number of hexadecimal digits, and a terminating right curly bracket). This allows
for entering characters of any code point literally in a string even when the encoding of the source file is bytewise
(Iatinl).

Intheshdll, if using aUnicodeinput device, or in source code stored in UTF-8, $ can befollowed directly by aUnicode
character producing an integer. In the following example, the code point of a Cyrillic # is output:

7> $c.
1089

Ericsson AB. All Rights Reserved.: STDLIB | 17

1.3 Using Unicode in Erlang

Heuristic String Detection

In certain output functions and in the output of return values in the shell, Erlang tries to detect string datain lists and
binaries heuristically. Typically you will see heuristic detection in a situation like this:

1> [97,98,99].

"abc"

2> <<97,98,99>>,

<<"abc">>

3> <<195,165,195,164,195,182>>.

o

<<"@ad"/utf8>>

Here the shell detects lists containing printable characters or binaries containing printable characters in bytewise or
UTF-8 encoding. But what is aprintable character? One view is that anything the Unicode standard thinksis printable,
is also printable according to the heuristic detection. The result is then that almost any list of integers are deemed a
string, and all sorts of characters are printed, maybe also characters that your terminal lacks in its font set (resulting
in some unappreciated generic output). Another way is to keep it backward compatible so that only the SO Latin-1
character set is used to detect a string. A third way is to let the user decide exactly what Unicode ranges that are to
be viewed as characters.

Asfrom Erlang/OTP R16B you can select the | SO Latin-1 range or the whole Unicode range by supplying startup flag
+pc latinlor+pc unicode, respectively. For backward compatibility, | at i nl isdefault. Thisonly controls
how heuristic string detection is done. More ranges are expected to be added in the future, enabling tailoring of the
heuristics to the language and region relevant to the user.

The following examples show the two startup options:

$ erl +pc latinl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> [1024].

[1024]

2> [1070,1085,1080,1082,1086,1076] .
[1070,1085,1080,1082,1086,1076]

3> [229,228,246].

"8a6"

4> <<208,174,208,189,208,184,208,186,208,190,208,180>>.
<<208,174,208,189,208,184,208,186,208,190,208,180>>

5> <<229/utf8,228/utf8,246/utf8>>.

no

<<"@ad"/utf8>>

$ erl +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe]l [kernel-poll:false]

Eshell V5.10.1 (abort with "G)

1> [1024].

||E||

2> [1070,1085,1080,1082,1086,1076] .
"OHnkop"

3> [229,228,246].

"846"

4> <<208,174,208,189,208,184,208,186,208,190,208,180>>.
<<"lOHnkop" /utf8>>

5> <<229/utf8,228/utf8,246/utf8>>.
<<"846"/utf8>>

In the examples, you can see that the default Erlang shell interprets only characters from the 1SO Latinl range as
printable and only detectslists or binaries with those "printable" characters as containing string data. The valid UTF-8

18 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

binary containing the Russian word "######", is not printed as a string. When started with all Unicode characters
printable (+pc uni code), the shell outputs anything containing printable Unicode data (in binaries, either UTF-8
or bytewise encoded) as string data.

These heuristicsarealsoused by i o: format/ 2,i o_l i b: f or mat/ 2, and friends when modifier t is used with
~p or ~P:

$ erl +pc latinl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with "G)

1> io:format("~tp~n", [{<<"330">>, <<"336"/utf8>>, <<208,174,208,189,208,184,208,186,208,190,208,180>>}]).

{<<"346">>,<<"3546" /utf8>>,<<208,174,208,189,208,184,208,186,208,190,208,180>>}
ok

$ erl +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)
1> io:format("~tp~n", [{<<"330">>, <<"3&46"/utf8>>, <<208,174,208,189,208,184,208,186,208,190,208,180>>}]).

n2 nQ

{<<"aa0">>,<<"aad" /utf8>>,<<"l0HuKopn" /utf8>>}
ok

Notice that this only affects heuristic interpretation of lists and binaries on output. For example, the ~t s format
sequence always outputs a valid list of characters, regardless of the +pc setting, as the programmer has explicitly
requested string output.

1.3.7 The Interactive Shell

The interactive Erlang shell, when started to a termina or started using command wer | on Windows, can support
Unicode input and output.

On Windows, proper operation requires that a suitable font isinstalled and selected for the Erlang application to use.
If no suitable font is available on your system, try installing the DegjaVu fonts, which are freely available, and then
select that font in the Erlang shell application.

On Unix-like operating systems, the terminal is to be able to handle UTF-8 on input and output (this is done by, for
example, modern versions of XTerm, KDE Konsole, and the Gnome terminal) and your local e settings must be proper.
As an example, a LANG environment variable can be set as follows:

$ echo $LANG
en US.UTF-8
Most systems handle variable LC_CTYPE before LANG, o if that is set, it must be set to UTF- 8:
$ echo $LC CTYPE
en US.UTF-8

The LANGor LC_CTYPE setting are to be consistent with what the terminal is capable of. There is no portable way
for Erlang to ask the terminal about its UTF-8 capacity, we have to rely on the language and character type settings.

To investigate what Erlang thinks about the terminal, thecall i 0: get opt s() can be used when the shell is started:

Ericsson AB. All Rights Reserved.: STDLIB | 19

href

1.3 Using Unicode in Erlang

$ LC CTYPE=en US.IS0-8859-1 erl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> lists:keyfind(encoding, 1, io:getopts()).

{encoding, latinl}

2> q().

ok

$ LC CTYPE=en US.UTF-8 erl

Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> lists:keyfind(encoding, 1, io:getopts()).
{encoding,unicode}

2>

When (finally?) everything is in order with the locale settings, fonts. and the terminal emulator, you have probably
found away to input charactersin the script you desire. For testing, the simplest way isto add some keyboard mappings
for other languages, usually done with some applet in your desktop environment.

In aKDE environment, select KDE Control Center (Personal Settings) > Regional and Accessibility > Keyboar d
Layout.

On Windows XP, select Control Panel > Regional and L anguage Options, select tab L anguage, and click button
Details... in the square named Text Servicesand I nput L anguages.

Y our environment probably provides similar means of changing the keyboard layout. Ensure that you have a way to
switch back and forth between keyboards easily if you are not used to this. For example, entering commands using a
Cyrillic character set is not easily done in the Erlang shell.

Now you are set up for some Unicode input and output. The simplest thing to do isto enter a string in the shell:

$ erl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with "G)

1> lists:keyfind(encoding, 1, io:getopts()).
{encoding,unicode}

2> "lOHukop" .

"lHnkop"

3> io:format("~ts~n", [v(2)]).

I0HMKOR

ok

4>

While strings can be input as Unicode characters, the language elements are still limited to the ISO Latin-1 character
set. Only character constants and strings are allowed to be beyond that range:

$ erl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)
1> $E.

958

2> l0HuKonO.

* 1: illegal character

2>

20 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

1.3.8 Unicode Filenames

Most modern operating systems support Unicode filenames in some way. There are many different ways to do this
and Erlang by default treats the different approaches differently:

Mandatory Unicode file naming

Windows, Android and, for most cases, MacOS X enforce Unicode support for filenames. All files created in the
file system have namesthat can consistently beinterpreted. In MacOS X and Android, al filenames areretrieved
in UTF-8 encoding. In Windows, each system call handling filenames hasaspecial Unicode-awarevariant, giving
much the same effect. There are no filenames on these systems that are not Unicode filenames. So, the default
behavior of the Erlang VM isto work in "Unicode filename trandation mode". This means that a filename can
be specified as a Unicode list, which is automatically translated to the proper name encoding for the underlying
operating system and file system.

Doing, for example, afil e: i st _di r/ 1 on one of these systems can return Unicode lists with code points
> 255, depending on the content of the file system.

Transparent file naming

Most Unix operating systems have adopted a simpler approach, namely that Unicode file naming is not enforced,
but by convention. Those systems usually use UTF-8 encoding for Unicode filenames, but do not enforce it.
On such a system, a filename containing characters with code points from 128 through 255 can be named as
plain ISO Latin-1 or use UTF-8 encoding. As no consistency is enforced, the Erlang VM cannot do consistent
trandlation of al filenames.

By default on such systems, Erlang startsin ut f 8 filename mode if the terminal supports UTF-8, otherwisein
I ati n1 mode.

Inl ati nl mode, filenames are bytewise encoded. This allows for list representation of al filenames in the
system. However, a afile named "Ostersund.txt", appearsinfil e: 1 i st _di r/ 1 either as"Ostersund.txt" (if
the filename was encoded in bytewise 1SO Latin-1 by the program creating the file) or more probably as
[195, 150, 115, 116, 101, 114, 115, 117, 110, 100], which isalist containing UTF-8 bytes (not what
you want). If you use Unicode filename translation on such a system, non-UTF-8 filenames are ignored by
functions like fil e:1ist_dir/1. They can be retrieved with function file:list_dir_all/1, but
wrongly encoded filenames appear as "raw filenames".

The Unicode file naming support was introduced in Erlang/OTP R14B01. A VM operating in Unicode filename
translation mode can work with files having names in any language or character set (as long as it is supported by
the underlying operating system and file system). The Unicode character list is used to denote filenames or directory
names. If the file system content is listed, you also get Unicode lists as return value. The support lies in the Kernel
and STDLIB modules, which is why most applications (that do not explicitly require the filenames to be in the ISO
Latin-1 range) benefit from the Unicode support without change.

On operating systems with mandatory Unicode filenames, this means that you more easily conform to the filenames of
other (non-Erlang) applications. Y ou can also process filenamesthat, at least on Windows, were inaccessible (because
of having names that could not be represented in SO Latin-1). Also, you avoid creating incomprehensible filenames
on MacOS X, asthevf s layer of the operating system accepts all your filenames as UTF-8 does not rewrite them.

For most systems, turning on Unicode filename translation is no problem even if it uses transparent file naming. Very
few systems have mixed filename encodings. A consistent UTF-8 named system works perfectly in Unicode filename
mode. It wasstill, however, considered experimental in Erlang/OTP R14B01 and isstill not the default on such systems.

Unicode filename trandlation is turned on with switch +f nu. On Linux, a VM started without explicitly stating the
filenametrandation mode defaultsto| at i n1 asthe native filename encoding. On Windows, MacOS X and Android,
the default behavior is that of Unicode filename trandlation. Therefore fi | e: nati ve_nane_encodi ng/ 0 by
default returns ut f 8 on those systems (Windows does not use UTF-8 on the file system level, but this can
safely be ignored by the Erlang programmer). The default behavior can, as stated earlier, be changed using option
+f nu or +f nl to the VM, see the er| program. If the VM is started in Unicode filename trandation mode,

Ericsson AB. All Rights Reserved.: STDLIB | 21

1.3 Using Unicode in Erlang

file:native_nane_encodi ng/ 0 returns atom ut f 8. Switch +f nu can be followed by w; i , or e to control
how wrongly encoded filenames are to be reported.

e wmeansthat awarning is sent to the er r or _| ogger whenever a wrongly encoded filename is "skipped" in
directory listings. wis the default.

e i meansthat wrongly encoded filenames are silently ignored.
e e means that the API function returns an error whenever a wrongly encoded filename (or directory name) is
encountered.

Noticethatfi | e: read_I i nk/ 1 alwaysreturns an error if the link pointsto an invalid filename.

In Unicode filename mode, filenames given to BIF open_port/ 2 with option { spawn_execut abl e, ...}
are also interpreted as Unicode. So is the parameter list specified in option ar gs available when using
spawn_execut abl e. The UTF-8 trandation of arguments can be avoided using binaries, see section Notes About
Raw Filenames.

Notice that the file encoding options specified when opening a file has nothing to do with the filename encoding
convention. You can very well open files containing data encoded in UTF-8, but having filenames in bytewise
(I at i n1) encoding or conversely.

Erlang drivers and NIF-shared objects still cannot be named with names containing code points > 127. This
limitation will be removed in a future release. However, Erlang modules can, but it is definitely not a good idea
and is still considered experimental.

Notes About Raw Filenames

Note that raw filenames not necessarily are encoded the same way as on the OS level.

Raw filenames were introduced together with Unicode filename support in ERTS 5.8.2 (Erlang/OTP R14B01). The
reason "raw filenames' were introduced in the system was to be able to represent filenames, specified in different
encodings on the same system, consistently. It can seem practical to have the VM automatically translate a filename
that is not in UTF-8 to alist of Unicode characters, but this would open up for both duplicate filenames and other
inconsistent behavior.

Consider a directory containing a file named "bjorn" in 1SO Latin-1, while the Erlang VM is operating in Unicode
filename mode (and therefore expects UTF-8 file naming). The 1SO Latin-1 nameis not valid UTF-8 and one can be
tempted to think that automatic conversion in, for example, fil e: 1ist_dir/ 1 isagood idea But what would
happen if we later tried to open the file and have the name as a Unicode list (magically converted fromthe SO Latin-1
filename)? The VM converts the filename to UTF-8, as this is the encoding expected. Effectively this means trying
to open the file named <<"bjorn"/utf8>>. This file does not exist, and even if it existed it would not be the same file
asthe one that was listed. We could even create two files named "bjérn", one named in UTF-8 encoding and one not.
Iffile:list_dir/1wouldautomaticaly convertthe SO Latin-1 filename to alist, we would get two identical
filenames asthe result. To avoid this, we must differentiate between filenames that are properly encoded according to
the Unicode file naming convention (that is, UTF-8) and filenamesthat areinvalid under the encoding. By the common
functionfil e: 1ist_dir/ 1, thewrongly encoded filenames are ignored in Unicode filename translation mode,
but by functionfil e: i st _dir_al I /1 thefilenameswith invalid encoding are returned as"raw" filenames, that
is, as binaries.

The fil e module accepts raw filenames as input. open_port ({spawn_executable, ...} ...)
aso accepts them. As mentioned earlier, the arguments specified in the option list to
open_port ({spawn_executable, ...} ...) undergothesame conversion asthefilenames, meaning that

22 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

the executable is provided with arguments in UTF-8 as well. This trandation is avoided consistently with how the
filenames are treated, by giving the argument as a binary.

To force Unicode filename trand ation mode on systems where thisis not the default was considered experimental in
Erlang/OTP R14B01. This was because the initial implementation did not ignore wrongly encoded filenames, so that
raw filenames could spread unexpectedly throughout the system. As from Erlang/OTP R16B, the wrongly encoded
filenames are only retrieved by special functions (suchasfil e: 1ist_dir_al |/ 1). Sincetheimpact on existing
code is therefore much lower it is now supported. Unicode filename trandlation is expected to be default in future
releases.

Even if you are operating without Unicode file naming transl ation automatically done by the VM, you can access and
create fileswith namesin UTF-8 encoding by using raw filenames encoded as UTF-8. Enforcing the UTF-8 encoding
regardless of the mode the Erlang VM is started in can in some circumstances be a good idea, as the convention of
using UTF-8 filenames is spreading.

Notes About MacOS X

The vf s layer of MacOS X enforces UTF-8 filenames in an aggressive way. Older versions did this by refusing to
create non-UTF-8 conforming filenames, while newer versions replace offending bytes with the sequence "%HH",
where HH isthe origina character in hexadecimal notation. As Unicode translation is enabled by default on MacOS
X, the only way to come up against thisis to either start the VM with flag +f nl or to use araw filename in bytewise
(I at i n1) encoding. If using araw filename, with a bytewise encoding containing characters from 127 through 255,
to create afile, the file cannot be opened using the same hame as the one used to create it. Thereis no remedy for this
behavior, except keeping the filenames in the correct encoding.

MacOS X reorganizes the filenames so that the representation of accents, and so on, uses the "combining characters'.
For example, character 6 isrepresented as code points[111, 776] , where111 ischaracter o and 776 isthe special
accent character "Combining Diaeresis’. This way of normalizing Unicode is otherwise very seldom used. Erlang
normalizes those filenames in the opposite way upon retrieval, so that filenames using combining accents are not
passed up to the Erlang application. In Erlang, filename "bjérn" is retrieved as[98, 106, 246, 114, 110] , not as
[98, 106, 117, 776, 114, 110] , athough the file system can think differently. The normalization into combining
accents is redone when accessing files, so this can usually be ignored by the Erlang programmer.

1.3.9 Unicode in Environment and Parameters

Environment variables and their interpretation are handled much in the same way as filenames. If Unicode filenames
are enabled, environment variables as well as parameters to the Erlang VM are expected to be in Unicode.

If Unicode filenames are enabled, the callsto os: get env/ 0, 1, os: put env/ 2, and os: unset env/ 1 handle
Unicode strings. On Unix-like platforms, the built-in functions trandate environment variables in UTF-8 to/from
Unicode strings, possibly with code points > 255. On Windows, the Unicode versions of the environment system API
are used, and code points > 255 are allowed.

On Unix-like operating systems, parameters are expected to be UTF-8 without trandation if Unicode filenames are
enabled.

1.3.10 Unicode-Aware Modules

Most of the modulesin Erlang/OTP are Unicode-unaware in the sense that they have no notion of Unicode and should
not have. Typically they handle non-textual or byte-oriented data (such asgen_t cp).

Modules handling textual data (such asi o_| i b and st ri ng are sometimes subject to conversion or extension to
be able to handle Unicode characters.

Fortunately, most textual data has been stored in lists and range checking has been sparse, so moduleslikest ri ng
work well for Unicode strings with little need for conversion or extension.

Some modules are, however, changed to be explicitly Unicode-aware. These modules include:

Ericsson AB. All Rights Reserved.: STDLIB | 23

1.3 Using Unicode in Erlang

uni code

Theuni code moduleisclearly Unicode-aware. It contains functions for conversion between different Unicode
formats and some utilitiesfor identifying byte order marks. Few programs handling Unicode data survive without
this module.

Thei o module has been extended along with the actual 1/0 protocol to handle Unicode data. This means that
many functions require binaries to be in UTF-8, and there are modifiersto format control sequencesto allow for
output of Unicode strings.

file,group,user

1/O-servers throughout the system can handle Unicode data and have options for converting data upon output or
input to/from the device. As shown earlier, the shel | module has support for Unicode terminals and thef i | e
module allows for translation to and from various Unicode formats on disk.

Reading and writing of files with Unicode datais, however, not best donewith thef i | e module, asitsinterface
isbyte-oriented. A file opened with a Unicode encoding (like UTF-8) isbest read or written using thei o module.

re

Ther e module alows for matching Unicode strings as a special option. Asthe library is centered on matching
in binaries, the Unicode support is UTF-8-centered.

The graphical library wx has extensive support for Unicode text.

The st ri ng module works perfectly for Unicode strings and SO Latin-1 strings, except the language-dependent
functions string: uppercase/ 1 and string: | owercase/ 1. These two functions can never function
correctly for Unicode characters in their current form, as there are language and locale issues to consider when
converting text between cases. Converting case in an international environment is a large subject not yet addressed
in OTP.

1.3.11 Unicode Data in Files

Although Erlang can handle Unicode data in many forms does not automatically mean that the content of any file can
be Unicode text. The external entities, such as ports and 1/O servers, are not generally Unicode capable.

Ports are always byte-oriented, so before sending data that you are not sure is bytewise-encoded to a port, ensure to
encode it in a proper Unicode encoding. Sometimes this means that only part of the data must be encoded as, for
example, UTF-8. Some parts can be binary data (like a length indicator) or something else that must not undergo
character encoding, so no automatic translation is present.

I/0 servers behave a little differently. The I/O servers connected to terminals (or st dout) can usually cope with
Unicode data regardless of the encoding option. This is convenient when one expects a modern environment but do
not want to crash when writing to an archaic terminal or pipe.

A file can have an encoding option that makes it generaly usable by the i o module (for example
{encodi ng, ut f 8}), but is by default opened as a byte-oriented file. The f i | e module is byte-oriented, so only
ISO Latin-1 characters can be written using that module. Use the i 0 module if Unicode data is to be output to afile
with other encodi ng than| at i n1 (bytewise encoding). It isdightly confusing that afile opened with, for example,
file:open(Name, [read, {encodi ng, utf8}]) cannotbeproperlyreadusingfil e: read(Fil e, N), but
using the i o module to retrieve the Unicode data from it. The reasonisthatfil e:read andfil e: wite (and
friends) are purely byte-oriented, and should be, asthat isthe way to accessfiles other than text files, byte by byte. As
with ports, you can write encoded datainto afile by "manually” converting the data to the encoding of choice (using
theuni code module or the hit syntax) and then output it on abytewise (I at i n1) encoded file.

Recommendations:

24 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

e Usethefil e modulefor files opened for bytewise access ({ encodi ng, | ati n1}).
« Usethei o module when accessing files with any other encoding (for example{ encodi ng, ut f 8}).

Functions reading Erlang syntax from files recognize the codi ng: comment and can therefore handle Unicode data
on input. When writing Erlang terms to afile, you are advised to insert such comments when applicable:

$ erl +fna +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> file:write file("test.term",<<"%% coding: utf-8\n[{\"lOHukopg\",4711}].\n"/utf8>>).
ok

2> file:consult("test.term").

{ok, [[{"0OHukon",4711}11}

1.3.12 Summary of Options

The Unicode support is controlled by both command-line switches, some standard environment variables, and the OTP
version you are using. Most options affect mainly how Unicode datais displayed, not the functionality of the APIsin
the standard libraries. This means that Erlang programs usually do not need to concern themselves with these options,
they are more for the development environment. An Erlang program can be written so that it works well regardless
of the type of system or the Unicode options that are in effect.

Here follows a summary of the settings affecting Unicode:
The LANGand LC_CTYPE environment variables

The language setting in the operating system mainly affects the shell. The terminal (that is, the group leader)
operates with { encodi ng, uni code} only if the environment tells it that UTF-8 is allowed. This setting is
to correspond to the terminal you are using.

The environment can also affect filename interpretation, if Erlang is started with flag +f na (which is default
from Erlang/OTP 17.0).

You can check the setting of this by calling i o: get opt s(), which gives you an option list containing
{encodi ng, uni code} or{encodi ng, | atinl}.

The+pc {uni code|l ati n1} flagtoerl (1)
This flag affects what is interpreted as string data when doing heuristic string detection in the shell and ini o/
i o_lib:format withthe" ~t p" and ~t P formatting instructions, as described earlier.

Y ou can check this option by calling i o: pri nt abl e_range/ 0, which returns uni code or | ati nl. To
be compatible with future (expected) extensions to the settings, rather usei o_| i b: printable_list/1to
check if alist is printable according to the setting. That function takes into account new possible settings returned
fromi o: printabl e_range/ 0.

The +f n{l |ula} [{Wi |e}] flagtoer] (1)

This flag affects how the filenames are to be interpreted. On operating systems with transparent file naming,
this must be specified to alow for file naming in Unicode characters (and for correct interpretation of filenames
containing characters > 255).

« +fnl means bytewise interpretation of filenames, which was the usual way to represent 1SO Latin-1
filenames before UTF-8 file naming got widespread.

e +f nu means that filenames are encoded in UTF-8, which is nowadays the common scheme (although not
enforced).

e +f na meansthat you automatically select between +f nl and +f nu, based on environment variables LANG
and LC_CTYPE. This is optimistic heuristics indeed, nothing enforces a user to have a terminal with the

Ericsson AB. All Rights Reserved.: STDLIB | 25

1.3 Using Unicode in Erlang

same encoding as the file system, but thisis usually the case. Thisis the default on al Unix-like operating
systems, except MacOS X.

Thefilename translation mode can be read with functionf i | e: nati ve_name_encodi ng/ 0, which returns
| at i n1 (bytewise encoding) or ut f 8.

epp: defaul t _encodi ng/ 0

This function returns the default encoding for Erlang source files (if no encoding comment is present) in the
currently running release. In Erlang/OTP R16B, | at i n1 (bytewise encoding) was returned. As from Erlang/
OTP 17.0, ut f 8 isreturned.

The encoding of each file can be specified using comments as described in the epp(3) module.
i 0: setopts/1,2andflags- ol dshel | /-noshel |

When Erlang is started with - ol dshel | or - noshel | , thel/O server for st andar d_i o is by default set to
bytewise encoding, while an interactive shell defaults to what the environment variables says.

You can set the encoding of a file or other 1/O server with function i 0: set opt s/ 2. This can also be
set when opening a file. Setting the terminal (or other st andar d_i o server) unconditionally to option
{'encodi ng, ut f 8} impliesthat UTF-8 encoded characters are written to the device, regardless of how Erlang
was started or the user's environment.

Opening files with option encodi ng is convenient when writing or reading text filesin a known encoding.
You can retrieve the encodi ng setting for an 1/0 server with functioni o: get opt s() .

1.3.13 Recipes

When starting with Unicode, one often stumbles over some common issues. This section describes some methods of
dealing with Unicode data.

Byte Order Marks

A common method of identifying encoding in text filesisto put a Byte Order Mark (BOM) first in the file. The BOM
isthe code point 16#FEFF encoded in the same way astheremaining file. If such afileisto beread, thefirst few bytes
(depending on encoding) are not part of the text. This code outlines how to open afile that is believed to have aBOM,
and sets the files encoding and position for further sequential reading (preferably using thei o module).

Notice that error handling is omitted from the code:

open bom file for reading(File) ->
{ok,F} = file:open(File, [read,binaryl),
{ok,Bin} = file:read(F,4),
{Type,Bytes} = unicode:bom to encoding(Bin),
file:position(F,Bytes),
io:setopts(F, [{encoding,Type}l),
{ok,F}.

Function uni code: bom t o_encodi ng/ 1 identifies the encoding from abinary of at least four bytes. It returns,
along with aterm suitable for setting the encoding of thefile, the byte length of the BOM, so that the file position can
be set accordingly. Notice that functionf i | e: posi ti on/ 2 always works on byte-offsets, so that the byte length
of the BOM is needed.

To open afilefor writing and place the BOM first is even simpler:

open bom file for writing(File,Encoding) ->
{ok,F} = file:open(File, [write,binary]),
ok = file:write(File,unicode:encoding to bom(Encoding)),
io:setopts(F, [{encoding,Encoding}]),
{ok,F}.

26 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

The file is in both these cases then best processed using the i 0 module, as the functions in that module can handle
code points beyond the SO Latin-1 range.

Formatted I/O

When reading and writing to Unicode-aware entities, like afile opened for Unicode translation, you probably want to
format text strings using the functionsin thei o module or thei o_I| i b module. For backward compatibility reasons,
thesefunctionsdo not accept any list asastring, but require aspecial translation modifier whenworking with Unicode
texts. The modifier ist . When applied to control character s in aformatting string, it accepts all Unicode code points
and expects binariesto be in UTF-8:;

1> io:format("~ts~n", [<<"3&0"/utf8>>]).

EED)

ok

2> io:format("~s~n", [<<"380"/utf8>>]).

A¥AxAq

ok
Clearly, the second i o: f or mat / 2 gives undesired output, as the UTF-8 binary isnot in| at i n1. For backward
compatibility, the non-prefixed control character s expects bytewise-encoded ISO Latin-1 charactersin binaries and
lists containing only code points < 256.

Aslong asthe datais always lists, modifier t can be used for any string, but when binary dataisinvolved, care must
be taken to make the correct choice of formatting characters. A bytewise-encoded binary isalso interpreted asastring,
and printed even when using ~t s, but it can be mistaken for a valid UTF-8 string. Avoid therefore using the ~t s
control if the binary contains bytewise-encoded characters and not UTF-8.

Functioni o_| i b: f or mat / 2 behaves similarly. It is defined to return a deep list of characters and the output can
easily be converted to binary datafor outputting on any deviceby asimpleer | ang: | i st _to_bi nary/ 1. When
the trandation modifier is used, the list can, however, contain characters that cannot be stored in one byte. Thecall to
erlang:list_to_binary/ 1 thenfails. However, if the I/O server you want to communicate with is Unicode-
aware, the returned list can still be used directly:

$ erl +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with "G)

1> io lib:format("~ts~n", ["FtoVvikovt"]).
["Tovvikovt","\n"]

2> io:put chars(io lib:format("~ts~n", ["ltovOvikovt"])).
Iovvikovt

ok

The Unicode string is returned as a Unicode list, which is recognized as such, as the Erlang shell uses the Unicode
encoding (and is started with all Unicode characters considered printable). The Unicode list is valid input to function
i 0: put _char s/ 2, so data can be output on any Unicode-capable device. If the device isaterminal, characters are
output in format \ x{ H...} if encodingis| ati n1. Otherwisein UTF-8 (for the non-interactive terminal: "oldshell"
or "noshell") or whatever is suitable to show the character properly (for an interactive terminal: the regular shell).

So, you can always send Unicode datato thest andar d_i o device. Files, however, accept only Unicode code points
beyond ISO Latin-1if encodi ng isset to something elsethan| at i nl.

Heuristic Identification of UTF-8

Whileit is strongly encouraged that the encoding of charactersin binary datais known before processing, that is not
always possible. On atypical Linux system, thereisamix of UTF-8 and 1SO Latin-1 text files, and there are seldom
any BOMs in the filesto identify them.

Ericsson AB. All Rights Reserved.: STDLIB | 27

1.3 Using Unicode in Erlang

UTF-8isdesigned so that SO Latin-1 characters with numbers beyond the 7-bit ASCII range are seldom considered
valid when decoded as UTF-8. Therefore one can usually use heuristics to determine if a file isin UTF-8 or if it
is encoded in SO Latin-1 (one byte per character). The uni code module can be used to determine if data can be
interpreted as UTF-8:

heuristic _encoding bin(Bin) when is binary(Bin) ->
case unicode:characters to binary(Bin,utf8,utf8) of
Bin ->
utf8;
7—>
latinl
end.

If you do not have a complete binary of the file content, you can instead chunk through
the file and check part by part. The return-tuple {i nconpl ete, Decoded, Rest} from function
uni code: characters_to_binary/ 1, 2, 3 comesinhandy. Theincomplete rest from one chunk of data read
fromthefileis prepended to the next chunk and we therefore avoid the problem of character boundaries when reading
chunks of bytesin UTF-8 encoding:

heuristic encoding file(FileName) ->
{ok,F} = file:open(FileName, [read,binary]),
loop_through file(F,<<>>,file:read(F,1024)).

loop_through file(,<<>>,eof) ->
utfs;
loop through file(, ,eof) ->
latinl;
loop_through file(F,Acc,{ok,Bin}) when is binary(Bin) ->
case unicode:characters to binary([Acc,Bin]) of
{error, , } ->
latinl;
{incomplete, ,Rest} ->
loop_through file(F,Rest,file:read(F,1024));
Res when is binary(Res) ->
loop_through file(F,<<>>,file:read(F,1024))
end.

Another option isto try to read the whole filein UTF-8 encoding and seeif it fails. Here we need to read thefile using
functioni o: get _char s/ 3, aswe have to read characters with a code point > 255:

heuristic _encoding file2(FileName) ->
{ok,F} = file:open(FileName, [read,binary, {encoding,utf8}1),
loop through file2(F,io:get chars(F,"'',1024)).

loop through file2(,eof) ->
utfs;

loop through file2(,{error, Err}) ->
latinl;

loop through file2(F,Bin) when is binary(Bin) ->
loop through file2(F,io:get chars(F,"'',1024)).

Lists of UTF-8 Bytes

For variousreasons, you can sometimes have alist of UTF-8 bytes. Thisisnot aregular string of Unicode characters, as
each list element does not contain one character. Instead you get the "raw" UTF-8 encoding that you havein binaries.
Thisiseasily converted to a proper Unicode string by first converting byte per byte into abinary, and then converting
the binary of UTF-8 encoded characters back to a Unicode string:

utf8 list to string(StrangelList) ->
unicode:characters to list(list to binary(StrangelList)).

28 | Ericsson AB. All Rights Reserved.: STDLIB

1.4 Uniform Resource ldentifiers

Double UTF-8 Encoding

When working with binaries, you can get the horrible "double UTF-8 encoding", where strange characters are encoded
in your binaries or files. In other words, you can get a UTF-8 encoded binary that for the second time is encoded
as UTF-8. A common situation is where you read a file, byte by byte, but the content is already UTF-8. If you then
convert the bytes to UTF-8, using, for example, the uni code module, or by writing to a file opened with option
{encodi ng, ut f 8}, you have each byte in the input file encoded as UTF-8, not each character of the original text
(one character can have been encoded in many bytes). Thereis no real remedy for this other than to be sure of which
data is encoded in which format, and never convert UTF-8 data (possibly read byte by byte from afile) into UTF-8

again.

By far the most common situation where this occurs, iswhen you get lists of UTF-8 instead of proper Unicode strings,
and then convert them to UTF-8 in abinary or on afile:

wrong thing to do() ->

{ok,Bin} = file:read file("an utf8 encoded file.txt"),

MyList = binary to list(Bin), %% Wrong! It is an utf8 binary!
{ok,C} = file:open("catastrophe.txt", [write,{encoding,utf8}]),
io:put chars(C,MyList), %% Expects a Unicode string, but get UTF-8

%% bytes in a list!
file:close(C). %% The file catastrophe.txt contains more or less unreadable
%% garbage!

Ensure you know what a binary contains before converting it to a string. If no other option exists, try heuristics:

if you can not know() ->
{ok,Bin} = file:read file("maybe utf8 encoded file.txt"),
MyList = case unicode:characters to list(Bin) of
L when is list(L) ->
L;
_ ->
binary to list(Bin) %% The file was bytewise encoded
end,
%% Now we know that the list is a Unicode string, not a list of UTF-8 bytes
{ok,G} = file:open("greatness.txt", [write,{encoding,utf8}]),
io:put_chars(G,MyList), %% Expects a Unicode string, which is what it gets!
file:close(G). %% The file contains valid UTF-8 encoded Unicode characters!

1.4 Uniform Resource ldentifiers
1.4.1 Basics

At the time of writing this document, in October 2020, there are two major standards concerning Universal Resource
Identifiers and Universal Resource L ocators:

* RFC 3986 - Uniform Resource | dentifier (URI): Generic Syntax

e WHAT WG URL - Living standard

The former isaclassical standard with a proper formal syntax, using the so called Augmented Backus-Naur Form
(ABNF) for describing the grammar, while the latter is aliving document describing the current pratice, that is, how

amajority of Web browsers work with URIs. WHAT WG URL is Web focused and it has no formal grammar but a
plain english description of the algorithms that should be followed.

What is the difference between them, if any? They provide an overlapping definition for resource identifiers and they
are not compatible. Theur i _st ri ng module implements RFC 3986 and the term URI will be used throughout this
document. A URI isan identifier, astring of characters that identifies a particular resource.

For a more complete problem statement regarding the URIs check the URL Problem Statement and Directions.

Ericsson AB. All Rights Reserved.: STDLIB | 29

href
href
href
href
href
href

1.4 Uniform Resource ldentifiers

1.4.2 What is a URI?

Let's start with what it isnot. It is not the text that you type in the address bar in your Web browser. Web browsers do
all possible heuristics to convert the input into avalid URI that could be sent over the network.

A URI isan identifier consisting of a sequence of characters matching the syntax rule named URI in RFC 3986.

It is crucia to clarify that a character is a symbol that is displayed on atermina or written to paper and should not
be confused with its internal representation.

A URI more specifically, is a sequence of characters from a subset of the US ASCII character set. The generic
URI syntax consists of a hierarchical sequence of components referred to as the scheme, authority, path, query, and
fragment. Thereis aformal description for each of these componentsin ABNF notation in RFC 3986:

URI = scheme ":" hier-part ["?" query] ["#" fragment]
hier-part = "//" authority path-abempty

/ path-absolute

/ path-rootless

/ path-empty
scheme = ALPHA *(ALPHA / DIGIT / "+" / "-" / ".")
authority = [userinfo "@"] host [":" port]
userinfo = *(unreserved / pct-encoded / sub-delims / ":")
reserved = gen-delims / sub-delims
gen-delims = ":" / "/" / "?" / "#* / "["/ "]1" / "@"
sub-delims = "I" / "¢" / "&" / "'" / "("/ ")"

/MR

unreserved = ALPHA / DIGIT / "-" / “." / " " / "~"

1.4.3 The uri_string module

As producing and consuming standard URI's can get quite complex, Erlang/OTP providesamodule, uri _stri ng,
to handle all the most difficult operations such as parsing, recomposing, normalizing and resolving URIs against a
base URI.

The APl functions in uri_string work on two basic data types uri_string() and uri_map().
uri _string() represents a standard URI, while uri _map() is a wider datatype, that can represent URI
components using Unicode characters. uri _map() isaconvenient choice for enabling operations such as producing
standard compliant URIs out of components that have special or Unicode characters. It is easier to explain this by
an example.

Let's say that we would like to create the following URI and send it over the network: htt p: // ci ti es/ 6r ebr 0?
foo bar. Thisisnot avalid URI as it contains characters that are not allowed in a URI such as"8" and the space.
We can verify this by parsing the URI:

1> uri string:parse("http://cities/6rebro?foo bar").
{error,invalid uri,":"}

The URI parser tries al possible combinations to interpret the input and fails at the last attempt when it encounters
the colon character " : " . Note, that theinital fault occurs when the parser attempts to interpret the character " 6" and
after afailure back-tracks to the point where it has another possible parsing alternative.

The proper way to solvethis problemistouseuri _stri ng: reconpose/ 1 withauri _nmap() asinput:

30 | Ericsson AB. All Rights Reserved.: STDLIB

href
href
href

1.4 Uniform Resource ldentifiers

2> uri string:recompose(#{scheme => "http", host => "cities", path => "/dérebro",
query => "foo bar"}).
"http://cities/%(C3%B6rebro?foo%20bar"

The result is a valid URI where al the special characters are encoded as defined by the standard. Applying
uri _string: parse/landuri_string: percent_decode/ 1 onthe URI returnsthe origina input:

3> uri string:percent decode(uri string:parse("http://cities/%C3%B6rebro?foo%20bar")).
#{host => "cities",path => "/6rebro",query => "foo bar",
scheme => "http"}

This symmetric property is heavily used in our property test suite.

1.4.4 Percent-encoding

As you have seen in the previous chapter, a standard URI can only contain a strict subset of the US ASCII character
set, moreover the allowed set of characters is not the same in the different URI components. Percent-encoding is a
mechanism to represent a data octet in a component when that octet's corresponding character is outside of the allowed
set or is being used as adelimiter. Thisiswhat you see when " 6" is encoded as %C3%B6 and space as %20. Most
of the API functions are expecting UTF-8 encoding when handling percent-encoded triplets. The UTF-8 encoding of
the Unicode character " 6" istwo octets: OxC3 0xB6. The character space isinthefirst 128 characters of Unicode
and it is encoded using a single octet 0x20.

Unicode is backward compatible with ASCII, the encoding of the first 128 characters is the same binary value
asin ASCII.

It is a major source of confusion exactly which characters will be percent-encoded. In order to make it easier to
answer this question the library provides a utility function, uri _stri ng: al | omed_charact ers/ 0 , that lists
the allowed set of charactersin each major URI component, and also in the most important standard character sets.

1> uri_string:allowed characters().

{scheme,

"+-,0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz"},
{userinfo,

"1$%&"' ()*+,-.0123456789: ; =ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz~"},
{host,

"1$&" () *+,-.0123456789: ; =ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopgrstuvwxyz~"},
{ipv4,".0123456789"},
{ipv6,".0123456789:ABCDEFabcdef"},
{regname,

"1$%&"' ()*+,-.0123456789;=ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopgrstuvwxyz~"},
{path,

"1$%&"' ()*+,-./0123456789: ; =@GABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopgrstuvwxyz~"},
{query,

"1$%&"' ()*+,-./0123456789: ; =?@ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopgrstuvwxyz~"},
{fragment,

"1$%&"' ()*+,-./0123456789: ; =?@ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopgrstuvwxyz~"},
{reserved, "!#$&' ()*+,/:;=?@[1"},
{unreserved,

"-.0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz~"}]

Ericsson AB. All Rights Reserved.: STDLIB | 31

1.4 Uniform Resource ldentifiers

If a URI component has a character that is not allowed, it will be percent-encoded when the URI is produced:

2> uri string:recompose(#{scheme => "https", host => "local#host", path => ""}).
"https://local%s23host"

Consuming a URI containing percent-encoded triplets can take many steps. The following example shows how
to handle an input URI that is not normalized and contains multiple percent-encoded triplets. First, the input
uri_string() istobeparsedintoauri _map() . The parsing only splits the URI into its components without
doing any decoding:

3> uri string:parse("http://%6C%6Fcal%23host/%F6re%26bro%s20") .
#{host => "%6(%6Fcal%23host",path => "/%F6re%26bro%s20",
scheme => "http"}}

Theinputisavalid URI but how can you decode those percent-encoded octets? Y ou can try to normalize theinput with
uri _string: nornalize/ 1. The normalize operation decodes those percent-encoded triplets that correspond to
acharacter in the unreserved set. Normalization is a safe, idempotent operation that converts a URI into its canonical
form:

4> uri string:normalize("http://%6C%6Fcal%23host/%F6re%s26bro%20").
"http://local%23host/%F6re%26bro%s20"
5> uri string:normalize("http://%6C%6Fcal%23host/%F6re%s26bro%20", [return map]).
#{host => "local%23host",path => "/%F6re%26bro%20",

scheme => "http"}

There are still a few percent-encoded triplets left in the output. At this point, when the URI is already parsed, it
is safe to apply application specific decoding on the remaining character triplets. Erlang/OTP provides a function,
uri _string: percent _decode/ 1 for raw percent decoding that you can use on the host and path components,
or on the whole map:

6> uri string:percent decode("local%23host").

"local#host"

7> uri_string:percent_decode("/%F6re%26bro%s20").

{error,invalid utf8,<<"/6re&bro ">>}

8> uri_string:percent_decode(#{host => "local%23host",path => "/%F6re%26bro%20",
scheme => "http"}).

{error,{invalid, {path, {invalid utf8,<<"/6re&bro ">>}}1}}

The host was successfully decoded but the path contains at least one character with non-UTF-8 encoding. In order
to be able to decode this, you have to make assumptions about the encoding used in these triplets. The most obvious
choiceislatin-1, soyoucantry uri _stri ng: transcode/ 2, totranscode the path to UTF-8 and run the percent-
decode operation on the transcoded string:

9> uri string:transcode("/%F6re%26bro%20", [{in encoding, latinl}]).
"/%C3%B6re%26bro%20"

10> uri string:percent decode("/%C3%B6re%26bro%20").

"/ore&bro "

It isimportant to emphasize that it is not safeto apply uri _stri ng: per cent _decode/ 1 directly on an input
URI:

32 | Ericsson AB. All Rights Reserved.: STDLIB

1.4 Uniform Resource ldentifiers

11> uri _string:percent decode("http://%6C%6Fcal%s23host/%C3%B6re%s26bro%s20").
"http://local#host/6re&bro "

12> uri string:parse("http://local#host/dre&bro ").

{error,invalid uri,":"}

Percent-encoding is implemented in uri _string: reconpose/ 1 and it happens when converting a
uri _map() intoauri _string(). Thereis no equivaent to a raw percent-encoding function as percent-
encoding shall be applied on the component level using different sets of allowed characters. Applying percent-
encoding directly on aninput URI would not be safejust asinthecaseof uri _stri ng: percent _decode/ 1,
the output could be aninvalid URI.

1.4.5 Normalization

Normalization isthe operation of converting theinput URI into acanonical form and keeping the reference to the same
underlying resource. The most common application of hormalization is determining whether two URIs are equivalent
without accessing their referenced resources.

Normalization has 6 distinct steps. First the input URI is parsed into an intermediate form that can handle Unicode
characters. This datatype is the uri _map(), that can hold the components of the URI in map elements of type
uni code: char dat a() . After having the intermediate form, a sequence of normalization algorithms are applied
to the individual URI components:

Case normalization

Convertsthe schene and host components to lower case as they are not case sensitive.
Percent-encoding normalization

Decodes percent-encoded triplets that correspond to charactersin the unreserved set.
Scheme-based normalization

Applying rules for the schemes http, https, ftp, ssh, sftp and tftp.
Path segment normalization

Converts the path into a canonical form.

After these steps, the intermediate data structure, an uri _map(), is fully normaized. The last step is applying
uri _string: reconpose/ 1 that convertsthe intermediate structure into avalid canonical URI string.

Notice the order, theuri _stri ng: normal i ze(URI Map, [return_map]) that we used many timesin this
user guideisashortcut in the normalization process returning the intermediate datastructure, and allowing usto inspect
and apply further decoding on the remaining percent-encoded triplets.

13> uri string:normalize("hTTp://LocalHost:80/%c3%B6rebro/a/../b").
"http://localhost/%C3%B6rebro/b"
14> uri string:normalize("hTTp://LocalHost:80/%c3%B6rebro/a/../b", [return map]).
#{host => "localhost",path => "/%(C3%B6rebro/b",

scheme => "http"}

Ericsson AB. All Rights Reserved.: STDLIB | 33

1.4 Uniform Resource ldentifiers

1.4.6 Special considerations

The current URI implementation provides support for producing and consuming standard URIs. The API is not meant
to be directly exposed in aWeb browser's address bar where users can basically enter free text. Application designers
shall implement proper heuristics to map the input into a parsable URI.

34 | Ericsson AB. All Rights Reserved.: STDLIB

1.4 Uniform Resource ldentifiers

2 Reference Manual

Ericsson AB. All Rights Reserved.: STDLIB | 35

STDLIB

STDLIB

Application

The STDLIB application is mandatory in the sense that the minimal system based on Erlang/OTP consists of Kernel
and STDLIB. The STDLIB application contains no services.
Configuration

The following configuration parameters are defined for the STDLIB application. For more information about
configuration parameters, seethe app(4) modulein Kernel.

shell _esc = icl | abort
Can be used to change the behavior of the Erlang shell when ~G is pressed.
restricted_shell = nodul e()

Can be used to run the Erlang shell in restricted mode.
shel | _cat ch_exception = bool ean()

Can be used to set the exception handling of the evaluator process of Erlang shell.
shell _history length = integer() >= 0

Can be used to determine how many commands are saved by the Erlang shell.
shel | _pronpt _func = {Md, Func} | default

where

e Md = atom()

e Func = atom()

Can be used to set a customized Erlang shell prompt function.
shel | _saved_results = integer() >= 0

Can be used to determine how many results are saved by the Erlang shell.
shel | _strings = bool ean()

Can be used to determine how the Erlang shell outputs lists of integers.

See Also
app(4),application(3),shdl(3)

36 | Ericsson AB. All Rights Reserved.: STDLIB

array

array

Erlang module

Functional, extendible arrays. Arrays can have fixed size, or can grow automatically as needed. A default valueis used
for entries that have not been explicitly set.

Arrays uses zer o-based indexing. Thisis a deliberate design choice and differs from other Erlang data structures, for
example, tuples.

Unless specified by the user when the array is created, the default value is the atom undef i ned. There is no
difference between an unset entry and an entry that has been explicitly set to the same value asthe default one (compare
reset/ 2). If you need to differentiate between unset and set entries, ensure that the default value cannot be confused
with the values of set entries.

The array never shrinks automatically. If anindex | has been used to set an entry successfully, al indicesin therange
[0,] stay accessible unlessthe array size is explicitly changed by callingr esi ze/ 2.

Examples:
Create afixed-size array with entries 0-9 set to undef i ned:

A0
10

array:new(10).
array:size(A0).

Create an extendible array and set entry 17 tot r ue, causing the array to grow automatically:

Al
18

array:set(17, true, array:new()).
array:size(Al).

Read back a stored value:

true = array:get(17, Al).

Accessing an unset entry returns default value:

undefined = array:get(3, Al)

Accessing an entry beyond the last set entry also returns the default value, if the array does not have fixed size:

undefined = array:get(18, Al).
"Sparse" functions ignore default-valued entries:
A2 = array:set(4, false, Al).
[{4, false}, {17, true}] = array:sparse to orddict(A2).

An extendible array can be made fixed-size |ater:

A3 = array:fix(A2).

A fixed-size array does not grow automatically and does not allow accesses beyond the last set entry:

Ericsson AB. All Rights Reserved.: STDLIB | 37

array

{'EXIT',{badarg, }}
{'EXIT',{badarg, }}

(catch array:set(18, true, A3)).
(catch array:get(18, A3)).

Data Types

array(Type)

A functional, extendible array. The representation is not documented and is subject to change without notice. Notice
that arrays cannot be directly compared for equality.

array() = array(term())

array _indx() = integer() >= 0

array opts() = array opt() | [array opt()]

array opt() =
{fixed, boolean()} |

fixed |
{default, Type :: term()} |
{size, N :: integer() >= 0} |

(N :: integer() >= 0)
indx_pairs(Type) = [indx pair(Type)]
indx_pair(Type) = {Index :: array indx(), Type}

Exports

default(Array :: array(Type)) -> Value :: Type
Gets the value used for uninitialized entries.
Seealsonew 2.

fix(Array :: array(Type)) -> array(Type)
Fixesthe array size. This prevents it from growing automatically upon insertion.
Seeadsoset/ 3 andrel ax/ 1.

foldl(Function, InitialAcc :: A, Array :: array(Type)) -> B
Types:
Function =
fun((Index :: array indx(), Value :: Type, Acc :: A) -> B)
Folds the array elements using the specified function and initial accumulator value. The elements are visited in order
from the lowest index to the highest. If Funct i on isnot afunction, the call fails with reason badar g.

Seeasofol dr/ 3, map/ 2,sparse_fol dl /3.

foldr(Function, InitialAcc :: A, Array :: array(Type)) -> B
Types:
Function =
fun((Index :: array indx(), Value :: Type, Acc :: A) -> B)

Folds the array elements right-to-left using the specified function and initial accumulator value. The elements are
visited in order from the highest index to thelowest. If Funct i on isnot afunction, the call failswith reasonbadar g.

38 | Ericsson AB. All Rights Reserved.: STDLIB

array

Seeasofol dl /3, map/ 2.

from list(List :: [Value :: Typel]) -> array(Type)
Equivalenttof rom | i st (Li st, undefi ned).

from list(List :: [Value :: Type], Default :: term()) ->
array(Type)

Converts alist to an extendible array. Def aul t is used as the value for uninitialized entries of the array. If Li st is
not a proper list, the call fails with reason badar g.

Seealsonew 2,to_list/1.

from orddict(0Orddict :: indx pairs(Value :: Type)) -> array(Type)
Equivalenttof r om or ddi ct (Orddi ct, undefined).

from orddict(Orddict :: indx pairs(Value :: Type),
Default :: Type) ->
array(Type)

Converts an ordered list of pairs{ | ndex, Val ue} to acorresponding extendible array. Def aul t isused asthe
value for uninitialized entries of the array. If Or ddi ct isnot aproper, ordered list of pairs whose first elements are
non-negative integers, the call fails with reason badar g.

Seedsonew 2,to_orddict/ 1.

get(I :: array indx(), Array :: array(Type)) -> Value :: Type

Gets the value of entry | . If | is not a non-negative integer, or if the array has fixed size and | is larger than the
maximum index, the call fails with reason badar g.

If the array does not have fixed size, the default value for any index | greater than si ze(Arr ay) - 1 isreturned.
Seealsoset/ 3.

is array(X :: term()) -> boolean()

Returnst r ue if Xisan array, otherwise f al se. Natice that the check is only shallow, as there is no guarantee that
Xisawell-formed array representation even if thisfunction returnst r ue.

is fix(Array :: array()) -> boolean()
Checksif the array hasfixed size. Returnst r ue if the array isfixed, otherwisef al se.
Seedsofi x/ 1.

map(Function, Array :: array(Typel)) -> array(Type2)
Types.
Function = fun((Index :: array indx(), Typel) -> Type2)

Maps the specified function onto each array element. The elements are visited in order from the lowest index to the
highest. If Funct i on isnot afunction, the call fails with reason badar g.

Seeasofoldl/3,foldr/3,sparse_nap/ 2.

Ericsson AB. All Rights Reserved.: STDLIB | 39

array

new() -> array()
Creates anew, extendible array with initial size zero.
Seeadsonew 1, new 2.

new(Options :: array opts()) -> array()

Creates a new array according to the specified otions. By default, the array is extendible and has initia size zero.
Array indices start at 0.

Opt i ons isasingleterm or alist of terms, selected from the following:
N::integer() >= Oor{size, N :integer() >= 0}

Specifies the initial array size; thisalso implies{fi xed, true}. If Nisnot anon-negative integer, the call
failswith reason badar g.

fixedor{fixed, true}
Creates afixed-sizearray. Seeadsofi x/ 1.
{fixed, false}
Creates an extendible (non-fixed-size) array.
{default, Value}
Sets the default value for the array to Val ue.
Options are processed in the order they occur inthe list, that is, later options have higher precedence.
The default value is used as the value of uninitialized entries, and cannot be changed once the array has been created.
Examples:

array:new(100)

creates a fixed-size array of size 100.

array:new({default,0})

creates an empty, extendible array whose default value is 0.

array:new([{size,10},{fixed, false}, {default,-1}1)

creates an extendible array with initial size 10 whose default valueis- 1.
Seedsofix/1,fromlist/2,get/2,new 0,new 2,set/ 3.

new(Size :: integer() >= 0, Options :: array opts()) -> array()

Creates a new array according to the specified size and options. If Si ze is hot a non-negative integer, the cal fails
with reason badar g. By default, the array has fixed size. Notice that any size specificationsin Opt i ons override
parameter Si ze.

If Opti ons isalist, thisis equivalent to new([{si ze, Size} | Options]), otherwiseitisequivalent to
new([{size, Size} | [Options]]).However, using thisfunction directly is more efficient.

Example:

40 | Ericsson AB. All Rights Reserved.: STDLIB

array

array:new(100, {default,0})

creates afixed-size array of size 100, whose default valueis 0.
Seeasonew 1.

relax(Array :: array(Type)) -> array(Type)
Makes the array resizable. (Reversesthe effectsof fi x/ 1.)
Seedsofi x/ 1.

reset(I :: array indx(), Array :: array(Type)) -> array(Type)

Resets entry | to the default value for the array. If the value of entry | is the default value, the array is returned
unchanged. Reset never changes the array size. Shrinking can be done explicitly by callingr esi ze/ 2.

If I isnot anon-negative integer, or if the array hasfixed sizeand | islarger than the maximum index, the call fails
with reason badar g; compareset / 3

Seeasonew 2,set/ 3.

resize(Array :: array(Type)) -> array(Type)

Changes the array size to that reported by spar se_si ze/ 1. If the specified array has fixed size, aso the resulting
array hasfixed size.

Seealsoresi zel 2,sparse_si ze/ 1.

resize(Size :: integer() >= 0, Array :: array(Type)) ->
array(Type)

Changethearray size. If Si ze isnot anon-negative integer, the call fails with reason badar g. If the specified array
has fixed size, also the resulting array has fixed size.

set(I :: array _indx(), Value :: Type, Array :: array(Type)) ->
array(Type)

Setsentry | of thearray to Val ue. If | isnot anon-negative integer, or if the array hasfixed sizeand | islarger than
the maximum index, the call fails with reason badar g.

If the array does not have fixed size, and | isgreater thansi ze(Array) - 1, thearray growsto sizel +1.
Seeasoget/2,reset/ 2.

size(Array :: array()) -> integer() >= 0

Gets the number of entries in the array. Entries are numbered from O to si ze(Array) - 1. Hence, thisis aso the
index of thefirst entry that is guaranteed to not have been previously set.

Seeasoset/ 3,sparse_size/ 1.

sparse_foldl(Function, InitialAcc :: A, Array :: array(Type)) -> B
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 41

array

Function =
fun((Index :: array indx(), Value :: Type, Acc :: A) -> B)

Folds the array elements using the specified function and initial accumulator value, skipping default-valued entries.
The elements are visited in order from the lowest index to the highest. If Funct i on isnot afunction, the call fails
with reason badar g.

Seeasofol dl /3,sparse_fol dr/3.

sparse foldr(Function, InitialAcc :: A, Array :: array(Type)) -> B
Types.
Function =
fun((Index :: array indx(), Value :: Type, Acc :: A) -> B)

Folds the array elements right-to-left using the specified function and initial accumulator value, skipping default-
valued entries. The elements are visited in order from the highest index to the lowest. If Funct i on isnot afunction,
the call fails with reason badar g.

Seeasofol dr/ 3,sparse_fol dl /3.

sparse _map(Function, Array :: array(Typel)) -> array(Type2)
Types.
Function = fun((Index :: array indx(), Typel) -> Type2)

M aps the specified function onto each array element, skipping default-valued entries. The elementsare visited in order
from the lowest index to the highest. If Funct i on isnot afunction, the call fails with reason badar g.

See also map/ 2.

sparse size(Array :: array()) -> integer() >= 0

Gets the number of entriesin the array up until the last non-default-valued entry. That is, returns| +1 if | isthe last
non-default-valued entry in the array, or zero if no such entry exists.

Seedsoresi zel/ 1,si zel 1.

sparse to list(Array :: array(Type)) -> [Value :: Typel
Convertsthe array to alist, skipping default-valued entries.
Seeasoto_list/1.

sparse_to orddict(Array :: array(Type)) ->
indx_pairs(Value :: Type)

Convertsthe array to an ordered list of pairs{ | ndex, Val ue}, skipping default-valued entries.
Seeasoto_orddict/1.

to list(Array :: array(Type)) -> [Value :: Type]
Convertsthe array to alist.
Seealsofrom|list/2,sparse to list/1.

to orddict(Array :: array(Type)) -> indx pairs(Value :: Type)
Convertsthe array to an ordered list of pairs{ 1 ndex, Val ue}.

42 | Ericsson AB. All Rights Reserved.: STDLIB

array

Seeasofrom orddict/2,sparse_to_orddict/1.

Ericsson AB. All Rights Reserved.: STDLIB | 43

assert.hrl

assert.hrl

Name

Theincludefileassert . hrl provides macrosfor inserting assertionsin your program code.
Include the following directive in the module from which the function is called:

-include lib("stdlib/include/assert.hrl").

When an assertion succeeds, the assert macro yieldsthe atom ok . When an assertion fails, an exception of typeer r or

is generated. The associated error term has the form { Macr o, | nf 0o} . Macr o is the macro name, for example,
assert Equal . I nf o isalist of tagged values, such as[{nodul e, M, {line, L}, ...],whichgives
more information about the location and cause of the exception. All entriesin the | nf o list are optional; do not rely
programmatically on any of them being present.

Each assert macro has a corresponding version with an extra argument, for adding comments to assertions. These
can for example be printed as part of error reports, to clarify the meaning of the check that failed. For example, ?
assert Equal (0, fib(0), "Fibonacci is defined for zero").Thecomment text can be any
character data (string, UTF8-binary, or deep list of such data), and will be included in the error term as{ corment ,
Text}.

If the macro NOASSERT isdefined whenassert . hr | isread by the compiler, the macros are defined as equivalent
to the atom ok. The test will not be performed and there is no cost at runtime.

For example, using er | ¢ to compile your modules, the following disables all assertions:
erlc -DNOASSERT=true *.erl

(The value of NOASSERT does not matter, only the fact that it is defined.)
A few other macros also have effect on the enabling or disabling of assertions:

« If NODEBUGIs defined, it implies NOASSERT (unless DEBUG s a so defined, which overrides NODEBUG).
* |f ASSERT isdefined, it overrides NOASSERT, that is, the assertions remain enabled.

If you prefer, you can thus use only DEBUG/NODEBUG as the main flags to control the behavior of the assertions
(which is useful if you have other compiler conditionals or debugging macros controlled by those flags), or you can
use ASSERT/NQASSERT to control only the assert macros.

Macros

assert (Bool Expr)
assert (Bool Expr, Comment)

Teststhat Bool Expr completes normally returningt r ue.

assert Not (Bool Expr)
assert Not (Bool Expr, Conment)

Teststhat Bool Expr completes normally returning f al se.

assert Mat ch(Guar dedPatt ern, Expr)
assert Mat ch(Guar dedPat tern, Expr, Conment)

Teststhat Expr completes normally yielding avalue that matches Guar dedPat t er n, for example:
?assertMatch({bork, }, f())

Noticethat aguardwhen . .. can beincluded:

44 | Ericsson AB. All Rights Reserved.: STDLIB

assert.hrl

?assertMatch({bork, X} when X > 0, f())

assert Not Mat ch(Guar dedPattern, Expr)
assert Not Mat ch(Guar dedPattern, Expr, Conment)

Teststhat Expr completes normally yielding a value that does not match Guar dedPat t er n.
Asinassert Mat ch, Guar dedPat t er n can have awhen part.

assert Equal (Expect edVal ue, Expr)
assert Equal (Expect edVal ue, Expr, Conment)

Teststhat Expr completes normally yielding avalue that is exactly equal to Expect edVal ue.

assert Not Equal (Expect edVal ue, Expr)
assert Not Equal (Expect edVal ue, Expr, Conment)

Teststhat Expr completes normally yielding avalue that is not exactly equal to Expect edVal ue.

assert Exception(C ass, Term Expr)
assert Exception(C ass, Term Expr, Coment)

Tests that Expr completes abnormally with an exception of type Cl ass and with the associated Ter m The
assertion failsif Expr raises adifferent exception or if it completes normally returning any value.

Notice that both Cl ass and Ter mcan be guarded patterns, asin asser t Mat ch.

assert Not Exception(C ass, Term Expr)
assert Not Exception(C ass, Term Expr, Comment)

Tests that Expr does not evaluate abnormally with an exception of type Cl ass and with the associated Ter m
The assertion succeeds if Expr raises adifferent exception or if it completes normally returning any value.

Asinassert Excepti on, both O ass and Ter mcan be guarded patterns.

assertError(Term Expr)
assertError(Term Expr, Conment)

Equivalentto assert Excepti on(error, Term Expr)

assertExit(Term Expr)
assertExit(Term Expr, Conment)

Equivalenttoassert Exception(exit, Term Expr)

assert Throw Term Expr)
assert Throwm Term Expr, Conment)

Equivalenttoassert Excepti on(throw, Term Expr)

See Also
conpil e(3),erl c(3)

Ericsson AB. All Rights Reserved.: STDLIB | 45

base64

base64

Erlang module

Provides base64 encode and decode, see RFC 2045.

Data Types

base64 alphabet() = 65..90 | 97..122 | 48..57 | 43 | 47 | 61
Base 64 Encoding alphabet, see RFC 4648.

base64 string() = [base64 alphabet()]

Base 64 encoded string.

base64 binary() = binary()

Base 64 encoded binary.

byte string() = [byte()]

Arbitrary sequences of octets.

Exports

decode(Base64) -> Data
decode to string(Base64) -> DataString
mime decode(Base64) -> Data
mime decode to string(Base64) -> DataString
Types.
Base64 = base64 string() | base64 binary()
Data = binary()
DataString = byte string()
Decodes a base64-encoded string to plain ASCII. See RFC 4648.

m ne_decode/ 1 and nmi ne_decode _to_string/ 1 strip away illegal characters, while decode/ 1 and
decode_to_string/ 1 only strip away whitespace characters.

encode(Data) -> Base64
encode to string(Data) -> Base64String
Types.
Data = byte string() | binary()
Base64 = base64 binary()
Base64String = base64 string()

Encodes aplain ASCII string into base64. The result is 33% larger than the data.

46 | Ericsson AB. All Rights Reserved.: STDLIB

href
href
href

beam_lib

beam_lib

Erlang module

Thismodule provides an interface to files created by the BEAM Compiler ("BEAM files"). Theformat used, avariant
of "EA IFF 1985" Standard for Interchange Format Files, divides datainto chunks.

Chunk data can be returned as binaries or as compound terms. Compound terms are returned when chunks are
referenced by names (atoms) rather than identifiers (strings). The recognized names and the corresponding identifiers
are asfollows:

e atons ("Atont)

e attributes ("Attr")

e conpile_info ("CInf")

 debug_info ("Dbgi")

e exports ("ExpT")

e inports ("I nmpT")

e indexed_ inports ("InpT")

« |abeled exports ("ExpT")

e labeled locals ("LocT")

e locals ("LocT")

Debug Information/Abstract Code

Optiondebug_i nf o canbe specified tothe Compiler (seeconpi | e(3)) to have debug information, such asErlang
Abstract Format, stored inthedebug_i nf o chunk. Tools such as Debugger and Xref require the debug information
to beincluded.

Source code can be reconstructed from the debug information. To prevent this, use encrypted debug information
(see below).

The debug information can aso be removed from BEAM files using strip/ 1, strip_files/1, and/or
strip_rel ease/ 1.

Reconstruct Source Code

The following example shows how to reconstruct Erlang source code from the debug information in a BEAM file
Beam

{ok,{ ,[{abstract code,{ ,AC}}]1}} = beam lib:chunks(Beam, [abstract code]).
io:fwrite("~s~n", [erl prettypr:format(erl syntax:form list(AC))]).

Encrypted Debug Information

The debug information can be encrypted to keep the source code secret, but till be able to use tools such as Debugger
or Xref.

To use encrypted debug information, a key must be provided to the compiler and beam | i b. The key is specified
asastring. It isrecommended that the string contains at least 32 characters and that both upper and lower case letters
aswell as digits and special characters are used.

Ericsson AB. All Rights Reserved.: STDLIB | 47

beam_lib

The default type (and currently the only type) of crypto algorithmisdes3_cbc, three rounds of DES. The key string
isscrambled using er | ang: md5/ 1 to generate the keys used for des3_cbc.

Asfar as we know by the time of writing, it isinfeasible to break des3_cbc encryption without any knowledge
of the key. Therefore, as long as the key is kept safe and is unguessable, the encrypted debug information should
be safe from intruders.

The key can be provided in the following two ways:

* Use Compiler option { debug_i nf o_key, Key}, seeconpi | e(3) and functioncrypt o_key_fun/ 1 to
register afun that returns the key whenever beam | i b must decrypt the debug information.

If no such funisregistered, beam | i b instead searchesfor an. er | ang. crypt file, see the next section.
« Storethekey inatext filenamed. er| ang. crypt .

In this case, Compiler option encr ypt _debug_i nf o can be used, seeconpi | e(3).

.erlang.crypt

beam | i b searchesfor. er | ang. cr ypt inthecurrent directory and then the home directory for the current user.
If thefileisfound and contains akey, beam | i b implicitly creates a crypto key fun and registersit.

File. erl ang. crypt isto contain asinglelist of tuples:
{debug info, Mode, Module, Key}

Mode is the type of crypto agorithm; currently, the only alowed value is des3_cbc. Modul e is either an atom,
in which case Key is only used for the module Modul e, or [], in which case Key is used for al modules. Key is
the non-empty key string.

Key in the first tuple where both Mode and Modul e match is used.
Thefollowingisan exampleof an. er | ang. cr ypt filethat returns the same key for all modules:
[{debug_info, des3 cbc, [1, "%>7}|pc/DM6Cga*68$Mw]L#& Gejr1G "}].

The following is aslightly more complicated example of an . er | ang. cr ypt providing one key for modulet and
another key for all other modules:

[{debug info, des3 cbc, t, "My KEY"},
{debug_info, des3 cbc, [], "%>7}|pc/DM6Cga*68$Mw]L#& Gejr]G"}].

Do not use any of the keys in these examples. Use your own keys. |

Data Types
beam() = file:filename() | binary()
Each of the functions described below accept either thefilename (asastring) or abinary containingthe BEAM module.

chunkdata() =
{chunkid(), dataB()} |
{abstract code, abst code()} |
{debug info, debug info()} |

48 | Ericsson AB. All Rights Reserved.: STDLIB

beam_lib

{attributes, [attrib entry()]1} |
{compile info, [compinfo entry()]} |
{exports, [{atom(), arity()}1} |
{labeled exports, [labeled entry()1} |
{imports, [mfa()]} |
{indexed imports,
[{index(), module(), Function :: atom(), arity()}1} |
{locals, [{atom(), arity()}1} |
{labeled locals, [labeled entry()1} |
{atoms, [{integer(), atom()}1}

Thelist of attributesissortedon Attri bute (inattri b_entry()) and each attribute name occurs once in the
list. The attribute values occur in the same order asin the file. The lists of functions are also sorted.

chunkid() = nonempty string()
"Attr" |"Clnf" | "Dbgi" | "ExpT" | "ImpT" | "LocT" | "AtU8"
dataB() = binary()

debug info() =
{DbgiVersion :: atom(), Backend :: module(), Data :: term()} |
no_debug info

The format stored in the debug_i nf o chunk. To retrieve particular code representation from the backend,
Backend: debug_i nfo(Format, Mdul e, Data, Opts) must beinvoked. For mat isan atom, such as
er | ang_v1 for the Erlang Abstract Format or cor e_v 1 for Core Erlang. Modul e isthe module represented by the
beamfileand Dat a isthe value stored in the debug info chunk. Opt s isany list of values supported by the Backend.
Backend: debug_i nf o/ 4 must return{ ok, Code} or{error, Tern}

Developersmust alwaysinvokethedebug i nf o/ 4 functionand never rely ontheDat a storedinthedebug_i nf o
chunk, as it is opague and may change at any moment. no_debug_i nf o means that chunk " Dbgi " is present,
but empty.
abst code() =

{AbstVersion :: atom(), forms()} | no abstract code

It is not checked that the forms conform to the abstract format indicated by Abst Ver si on.no_abstract _code
means that chunk " Abst " is present, but empty.

For modules compiled with OTP 20 onwards, the abst _code chunk is automatically computed from the
debug_i nf o chunk.

forms() = [erl parse:abstract form() | erl parse:form info()]

compinfo entry() = {InfoKey :: atom(), term()}

attrib entry() =
{Attribute :: atom(), [AttributeValue :: term()]}

labeled entry() = {Function :: atom(), arity(), label()}
index() = integer() >= 0

label() = integer()

chunkref() = chunkname() | chunkid()

chunkname () =
abstract code | debug info | attributes | compile info |
exports | labeled exports | imports | indexed imports |
locals | labeled locals | atoms

chnk rsn() =
{unknown chunk, file:filename(), atom()} |

Ericsson AB. All Rights Reserved.: STDLIB | 49

beam_lib

{key missing or_ invalid,

file:filename(),

abstract code | debug info} |

{missing backend, file:filename(), module()} |
info _rsn()

info_rsn() =
{chunk_too big,
file:filename(),

chunkid(),
ChunkSize :: integer() >= 0,
FileSize :: integer() >= 0} |

{invalid beam file,
file:filename(),

Position :: integer() >= 0} |

{invalid chunk, file:filename(), chunkid()} |
{missing chunk, file:filename(), chunkid()} |
{not_a beam file, file:filename()} |

{file error, file:filename(), file:posix()}

Exports

all chunks(File :: beam()) ->
{ok, beam 1lib, [{chunkid(), dataB()}1} |
{error, beam lib, info rsn()}

Reads chunk data for al chunks.

build module(Chunks) -> {ok, Binary}
Types.
Chunks [{chunkid (), dataB()}]
Binary = binary()

Builds aBEAM module (as a binary) from alist of chunks.

chunks (Beam, ChunkRefs) ->
{ok, {module(), [chunkdata()]}} |
{error, beam_lib, chnk rsn()}

Types:
Beam = beam()
ChunkRefs = [chunkref ()]

Reads chunk data for selected chunks references. The order of the returned list of chunk data is determined by the
order of thelist of chunks references.

chunks (Beam, ChunkRefs, Options) ->
{ok, {module(), [ChunkResult]}} |
{error, beam lib, chnk rsn()}

Types:

50 | Ericsson AB. All Rights Reserved.: STDLIB

beam_lib

Beam = beam()
ChunkRefs = [chunkref()]
Options = [allow missing chunks]
ChunkResult =
chunkdata() | {ChunkRef :: chunkref(), missing chunk}

Reads chunk data for selected chunks references. The order of the returned list of chunk data is determined by the
order of thelist of chunks references.

By default, if any requested chunk is missing in Beam an error tuple is returned. However, if option
al | ow_mi ssi ng_chunks isspecified, aresult isreturned even if chunksare missing. Intheresult list, any missing
chunks arerepresented as{ ChunkRef , m ssi ng_chunk} . Notice however that if chunk " At om" ismissing, that
isconsidered afatal error and the return valueisan er r or tuple.

clear _crypto key fun() -> undefined | {ok, Result}
Types:
Result = undefined | term()
Unregisters the crypto key fun and terminates the process holding it, started by cr ypt o_key_fun/ 1.

Returns either { ok, undefi ned} if no crypto key funisregistered, or { ok, Ter n}, where Ter misthe return
value from Cr ypt oKeyFun(cl ear) ,seecrypt o_key fun/ 1.

cmp (Beaml, Beam2) -> ok | {error, beam lib, cmp rsn()}

Types:
Beaml = Beam2 = beam()
cmp _rsn() =

{modules different, module(), module()} |
{chunks different, chunkid()} |

different chunks |

info rsn()

Comparesthe contents of two BEAM files. If the module names are the same, and all chunksexcept for chunk " Cl nf "
(the chunk containing the compilation information that is returned by Modul e: modul e_i nf o(conpi | €)) have
the same contents in both files, ok isreturned. Otherwise an error message is returned.

cmp dirs(Dirl, Dir2) ->
{Onlyl, Only2, Different} | {error, beam lib, Reason}

Types:
Dirl = Dir2 = atom() | file:filename()
Onlyl = Only2 = [file:filename()]
Different =
[{Filenamel :: file:filename(), Filename2 :: file:filename()}]

Reason = {not a directory, term()} | info _rsn()

Compares the BEAM files in two directories. Only files with extension " . beam' are compared. BEAM files that
exist only in directory Di r 1 (Di r 2) are returned in Onl y1 (Onl y2). BEAM files that exist in both directories
but are considered different by cnp/ 2 are returned as pairs {Fi | enanel, Fi | enane2}, where Fi | enanel
(Fi I enane2) existsindirectory Di r 1 (Di r 2).

crypto _key fun(CryptoKeyFun) -> ok | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 51

beam_lib

CryptoKeyFun = crypto_ fun()
Reason = badfun | exists | term()
crypto_fun() = fun((crypto fun arg()) -> term())
crypto fun arg() =
init | clear | {debug info, mode(), module(), file:filename()}
mode() = des3 cbc

Registers an unary fun that is called if beam | i b must read an debug_i nf o chunk that has been encrypted. The
funisheld in aprocessthat is started by the function.

If afunisaready registered when attempting to register afun, { error, exi st s} isreturned.
The fun must handl e the following arguments:

CryptoKeyFun(init) -> ok | {ok, NewCryptoKeyFun} | {error, Term}

Called when the fun is registered, in the process that holds the fun. Here the crypto key fun can do any
necessary initializations. If { ok, NewCr ypt oKeyFun} is returned, NewCr ypt oKeyFun is registered instead
of Crypt oKeyFun. If {error, Tern} isreturned, the registration is aborted and cr ypt o_key fun/ 1 aso
returns{error, Ternt.

CryptoKeyFun({debug info, Mode, Module, Filename}) -> Key

Called when thekey isneeded for module Mbdul e inthefilenamedFi | ename. Mode isthetypeof crypto agorithm;
currently, the only possible valueisdes3_cbc. The call isto fail (raise an exception) if no key is available.

CryptoKeyFun(clear) -> term()

Called beforethefunisunregistered. Here any cleaning up can bedone. Thereturn valueisnot important, but is passed
back to the caller of cl ear _crypt o_key_fun/ 0 aspart of its return value.

diff dirs(Dirl, Dir2) -> ok | {error, beam lib, Reason}
Types:

Dirl = Dir2 = atom() | file:filename()

Reason = {not a directory, term()} | info rsn()

Compares the BEAM filesin two directoriesas cnp_di r s/ 2, but the names of filesthat exist in only one directory
or are different are presented on standard output.

format_error(Reason) -> io lib:chars()
Types:
Reason = term()

For a specified error returned by any function in this module, this function returns a descriptive string of the error in
English. For fileerrors, functionfi | e: f or mat _error (Posi x) isto be called.

info(Beam) -> [InfoPair] | {error, beam lib, info rsn()}
Types:

52 | Ericsson AB. All Rights Reserved.: STDLIB

beam_lib

Beam = beam()

InfoPair =
{file, Filename :: file:filename()} |
{binary, Binary :: binary()} |
{module, Module :: module()} |

{chunks,
[{ChunkId :: chunkid(),
Pos :: integer() >= 0,

Size :: integer() >= 0}1}

Returns alist containing some information about a BEAM fileastuples{ It em | nf o}:
{file, Filenane} | {binary, Binary}

The name (string) of the BEAM file, or the binary from which the information was extracted.
{odul e, Modul e}

The name (atom) of the module.
{chunks, [{Chunkld, Pos, Size}]}

For each chunk, the identifier (string) and the position and size of the chunk data, in bytes.

md5(Beam) -> {ok, {module(), MD5}} | {error, beam lib, chnk rsn()}
Types:

Beam = beam()

MD5 = binary()

Calculates an MD5 redundancy check for the code of the module (compilation date and other attributes are not
included).

strip(Beaml) ->
{ok, {module(), Beam2}} | {error, beam lib, info rsn()}

Types:
Beaml = Beam2 = beam()

Removesall chunksfrom aBEAM file except those needed by the loader. In particular, the debug information (chunk
debug i nfo andabst ract code) isremoved.

strip(Beaml, AdditionalChunks) ->
{ok, {module(), Beam2}} | {error, beam lib, info rsn()}

Types.
Beaml = beam()
AdditionalChunks = [chunkid()]
Beam2 = beam()

Removes al chunks from a BEAM file except those needed by the loader or passed in. In particular, the debug
information (chunk debug_i nf o and abst ract _code) isremoved.

strip files(Files) ->
{ok, [{module(), Beam}]} |
{error, beam lib, info rsn()}

Types.

Ericsson AB. All Rights Reserved.: STDLIB | 53

beam_lib

Files = [beam()]
Beam = beam()
Removes all chunks except those needed by the loader from BEAM files. In particular, the debug information (chunk

debug i nfoandabstract code)isremoved. Thereturnedlist containsoneelement for each specified filename,
inthe same order asinFi | es.

strip files(Files, AdditionalChunks) ->
{ok, [{module(), Beam}]} |
{error, beam lib, info rsn()}

Types:
Files = [beam()]
AdditionalChunks = [chunkid()]
Beam = beam()
Removes all chunks except those needed by the loader or passed in from BEAM files. In particular, the debug

information (chunk debug_i nf o and abst r act _code) is removed. The returned list contains one element for
each specified filename, in the same order asinFi | es.

strip release(Dir) ->
{ok, [{module(), file:filename()}1} |
{error, beam lib, Reason}

Types:
Dir = atom() | file:filename()
Reason = {not a directory, term()} | info rsn()
Removes all chunks except those needed by the loader from the BEAM files of a release. Dir is to

be the instalation root directory. For example, the current OTP release can be stripped with the call
beam |lib:strip_rel ease(code:root_dir()).

strip release(Dir, AdditionalChunks) ->
{ok, [{module(), file:filename()}1} |
{error, beam 1lib, Reason}

Types:
Dir = atom() | file:filename()
AdditionalChunks = [chunkid()]
Reason = {not a directory, term()} | info _rsn()
Removes all chunks except those needed by the loader or passed in from the BEAM files of a release. Di r

is to be the installation root directory. For example, the current OTP release can be stripped with the call
beam |lib:strip_rel ease(code:root_dir()).

version(Beam) ->
{ok, {module(), [Version :: term()1}} |
{error, beam lib, chnk rsn()}

Types:
Beam = beam()

Returns the module version or versions. A version is defined by module attribute - vsn(Vsn) . If this attribute is
not specified, the version defaults to the checksum of the module. Notice that if version Vsn isnot aligt, it is made

54 | Ericsson AB. All Rights Reserved.: STDLIB

beam_lib

into one, that is{ ok, { Modul e, [Vsn] }} isreturned. If there are many - vsn module attributes, the result is the
concatenated list of versions.

Examples:

°

1> beam lib:version(a). % -vsn(l).

{ok,{a, [1]1}}

2> beam lib:version(b). % -vsn([1]).

{ok,{b, [1]1}}

3> beam lib:version(c). % -vsn([1]). -vsn(2).
{ok,{c,[1,2]}}

4> beam lib:version(d). % no -vsn attribute
{ok,{d, [275613208176997377698094100858909383631] } }

°

°

Ericsson AB. All Rights Reserved.: STDLIB | 55

binary

binary

Erlang module

This module contains functions for manipulating byte-oriented binaries. Although the majority of functions could be
provided using bit-syntax, the functionsin this library are highly optimized and are expected to either execute faster
or consume less memory, or both, than a counterpart written in pure Erlang.

The module is provided according to Erlang Enhancement Proposal (EEP) 31.

Thelibrary handles byte-oriented data. For bitstrings that are not binaries (does not contain whole octets of bits) a
badar g exception is thrown from any of the functions in this module.

Data Types

cp()

Opaque data type representing a compiled search pattern. Guaranteed to be a t upl e() to allow programs to
distinguish it from non-precompiled search patterns.

part() = {Start :: integer() >= 0, Length :: integer()}

A representation of apart (or range) in abinary. St ar t isazero-based offset into abi nar y() andLengt h isthe
length of that part. Asinput to functions in this module, a reverse part specification is allowed, constructed with a
negative Lengt h, so that the part of the binary beginsat St art + Lengt h and is-Lengt h long. This is useful
for referencing the last N bytes of abinary as{ si ze(Bi nary), -N}.Thefunctionsin thismodule always return
part () swith positive Lengt h.

Exports

at(Subject, Pos) -> byte()
Types:
Subject = binary()
Pos = integer() >= 0
Returnsthe byte at position Pos (zero-based) inbinary Subj ect asaninteger. If Pos >=byt e_si ze(Subj ect),
abadar g exception israised.

bin to list(Subject) -> [byte()]
Types:
Subject = binary()
Sameasbin_to |ist(Subject, {0, byte size(Subject)}).

bin to list(Subject, PosLen) -> [byte()]
Types:

56 | Ericsson AB. All Rights Reserved.: STDLIB

binary

Subject = binary()
PosLen = part()

Converts Subj ect to alist of byt e() s, each representing the value of one byte. part () denotes which part of
thebi nary() to convert.

Example:

1> binary:bin to list(<<"erlang">>, {1,3}).
n r'LaII
%% or [114,108,97] in list notation.

If PosLen in any way references outside the binary, abadar g exception israised.

bin to list(Subject, Pos, Len) -> [byte()]
Types:

Subject = binary()

Pos = integer() >= 0

Len = integer()
Sameas bin_to_list(Subject, {Pos, Len}).

compile pattern(Pattern) -> cp()
Types:
Pattern = binary() | [binary()]
Builds an internal structure representing a compilation of a search pattern, later to be used in functions nmat ch/ 3,

mat ches/ 3,split/3,orrepl acel/ 4. Thecp() returned isguaranteed to beat upl e() to allow programsto
distinguish it from non-precompiled search patterns.

When a list of bhinaries is specified, it denotes a set of alternative binaries to search for. For
example, if [<<"functional ">>, <<"progranmi ng">>] is specified as Patt ern, this means either
<<"functional ">>or <<" programi ng" >>". The pattern is a set of aternatives; when only a single binary
is specified, the set has only one element. The order of aternativesin apattern is not significant.

Thelist of binaries used for search alternatives must be flat and proper.
If Pat t er nisnot abinary or aflat proper list of binarieswith length > 0, abadar g exception is raised.

copy(Subject) -> binary()
Types:

Subject = binary()
Sameascopy(Subj ect, 1).

copy(Subject, N) -> binary()
Types:
Subject = binary()
N = integer() >= 0
Creates abinary with the content of Subj ect duplicated N times.

This function always createsanew binary, evenif N = 1. By using copy/ 1 on abinary referencing alarger binary,
one can free up the larger binary for garbage collection.

Ericsson AB. All Rights Reserved.: STDLIB | 57

binary

By deliberately copying a single binary to avoid referencing a larger binary, one can, instead of freeing up the
larger binary for later garbage collection, create much more binary data than needed. Sharing binary datais usually
good. Only in specia cases, when small parts reference large binaries and the large binaries are no longer used in
any process, deliberate copying can be agood idea.

If N< O, abadar g exception israised.

decode unsigned(Subject) -> Unsigned
Types:

Subject = binary()

Unsigned = integer() >= 0
Sameasdecode_unsi gned(Subj ect, big).

decode unsigned(Subject, Endianness) -> Unsigned
Types:
Subject = binary()
Endianness = big | little
Unsigned = integer() >= 0
Converts the binary digit representation, in big endian or little endian, of a positive integer in Subj ect to an Erlang
i nteger().
Example:

1> binary:decode unsigned(<<169,138,199>>,big).
11111111

encode_unsigned(Unsigned) -> binary()
Types:

Unsigned = integer() >= 0
Sameasencode_unsi gned(Unsi gned, big).

encode unsigned(Unsigned, Endianness) -> binary()
Types:

Unsigned = integer() >= 0

Endianness = big | little

Converts a positive integer to the smallest possible representation in a binary digit representation, either big endian
or little endian.

Example:

1> binary:encode unsigned(11111111, big).
<<169,138,199>>

encode hex(Bin) -> Bin2
Types:

58 | Ericsson AB. All Rights Reserved.: STDLIB

binary

Bin = binary()

Bin2 = << : *16>>
Encodes a binary into a hex encoded binary.
Example:

1> binary:encode_hex(<<"f">>).
<<II66II>>

decode hex(Bin) -> Bin2
Types:
Bin = << : *16>>
Bin2 = binary()
Decodes a hex encoded binary into abinary.
Example

1> binary:decode hex(<<"66">>).
<<II-f:II>>

first(Subject) -> byte()
Types.
Subject = binary()
Returnsthefirst byte of binary Subj ect asaninteger. If thesize of Subj ect iszero, abadar g exceptionisraised.

last(Subject) -> byte()
Types:
Subject = binary()
Returnsthelast byte of binary Subj ect asaninteger. If thesize of Subj ect iszero, abadar g exceptionisraised.

list to bin(BytelList) -> binary()
Types:
BytelList = iolist()

Worksexactly aser | ang: | i st _t o_bi nary/ 1, added for completeness.

longest common prefix(Binaries) -> integer() >= 0
Types:
Binaries = [binary()]
Returns the length of the longest common prefix of the binariesin list Bi nar i es.

Example:
1> binary:longest common prefix([<<"erlang">>, <<"ergonomy'"'>>]).
2
2> binary:longest common prefix([<<"erlang">>, <<"perl">>]).
0

If Bi nari es isnot aflat list of binaries, abadar g exception israised.

Ericsson AB. All Rights Reserved.: STDLIB | 59

binary

longest common suffix(Binaries) -> integer() >= 0
Types:
Binaries = [binary()]
Returns the length of the longest common suffix of the binariesin list Bi nari es.

Example:
1> binary:longest common_suffix([<<"erlang">>, <<"fang">>]).
3
2> binary:longest common suffix([<<"erlang">>, <<"perl">>]).
0

If Bi nari es isnot aflat list of binaries, abadar g exception is raised.

match(Subject, Pattern) -> Found | nomatch

Types:
Subject = binary()
Pattern = binary() | [binary()] | cp()

Found = part()
Sameasmat ch(Subj ect, Pattern, []).

match(Subject, Pattern, Options) -> Found | nomatch
Types:
Subject = binary()
Pattern = binary() | [binary()] | cp()
Found = part()
Options = [Option]
Option = {scope, part()}
part() = {Start :: integer() >= 0, Length :: integer()}
Searches for the first occurrence of Pat t er n in Subj ect and returns the position and length.
The function returns{ Pos, Lengt h} for the binary in Pat t er n, starting at the lowest position in Subj ect .

Example:

1> binary:match(<<"abcde">>, [<<"bcde">>, <<"cd">>],[]).
{1,4}

Even though <<" cd" >> ends before <<" bcde" >>, <<" bcde" >> begins first and is therefore the first match. If
two overlapping matches begin at the same position, the longest is returned.

Summary of the options:
{'scope, { Start, Length}}

Only the specified part is searched. Return values still have offsets from the beginning of Subj ect . A negative
Lengt h isalowed as described in section Data Types in this manual.

If none of the stringsin Pat t er n isfound, the atom nomat ch isreturned.
For adescription of Pat t er n, seefunction conpi | e_pattern/ 1.

If {scope, {Start, Length}} is specified in the options such that St art > size of Subj ect, Start +
Length<OQorStart +Lengt h >sizeof Subj ect ,abadar g exceptionisraised.

60 | Ericsson AB. All Rights Reserved.: STDLIB

binary

matches(Subject, Pattern) -> Found

Types.
Subject binary()
Pattern = binary() | [binary()] | cp()
Found = [part()]

Sameasmat ches(Subj ect, Pattern, []).

matches(Subject, Pattern, Options) -> Found

Types.
Subject = binary()
Pattern = binary() | [binary()] | cp()
Found = [part()]
Options = [Option]

Option = {scope, part()}
part() = {Start :: integer() >= 0, Length :: integer()}

Asmat ch/ 2, but Subj ect is searched until exhausted and alist of all non-overlapping parts matching Pat t er n
isreturned (in order).

Thefirst and longest match is preferred to a shorter, which isillustrated by the following example:

1> binary:matches(<<"abcde">>,
[<<"bcde">>,<<"bc">>,<<"de">>1,[1).

[{1,4}]

Theresult showsthat <<"bcde">> is selected instead of the shorter match <<"bc">> (which would have given raise to
one more match, <<"de">>). This correspondsto the behavior of POSIX regular expressions (and programs like awk),
but is not consistent with alternative matches in r e (and Perl), where instead lexical ordering in the search pattern
selects which string matches.

If none of the stringsin a pattern is found, an empty list is returned.
For adescription of Pat t er n, seeconpi | e_patt er n/ 1. For adescription of available options, see mat ch/ 3.

If {scope, {Start, Length}} isspecifiedinthe options such that St art > size of Subj ect, Start +
Length<QorStart + Lengthis>sizeof Subj ect,abadar g exceptionisraised.

part(Subject, PosLen) -> binary()
Types:
Subject = binary()
PosLen = part()
Extracts the part of binary Subj ect described by PosLen.
A negative length can be used to extract bytes at the end of a binary:
1> Bin = <<1,2,3,4,5,6,7,8,9,10>>.

2> binary:part(Bin, {byte size(Bin), -5}).
<<6,7,8,9,10>>

Ericsson AB. All Rights Reserved.: STDLIB | 61

binary

part/2 and part/3 are aso available in the erl ang module under the names bi nary_part/2 and
bi nary_part/ 3. Those BIFsare allowed in guard tests.

If PosLen in any way references outside the binary, abadar g exception israised.

part(Subject, Pos, Len) -> binary()
Types:

Subject = binary()

Pos = integer() >= 0

Len = integer()
Sameaspart (Subj ect, {Pos, Len}).

referenced byte size(Binary) -> integer() >= 0
Types:
Binary = binary()

If a binary references a larger binary (often described as being a subbinary), it can be useful to get the size of the
referenced binary. This function can be used in aprogram to trigger the use of copy/ 1. By copying abinary, one can
dereference the original, possibly large, binary that a smaller binary is areference to.

Example:

store(Binary, GBSet) ->
NewBin =
case binary:referenced byte size(Binary) of
Large when Large > 2 * byte size(Binary) ->
binary:copy(Binary);
->
Binary
end,
gb _sets:insert(NewBin,GBSet).

In this example, we chose to copy the binary content beforeinsertingitingb_set s: set () if it referencesabinary
more than twice the data size we want to keep. Of course, different rules apply when copying to different programs.

Binary sharing occurs whenever binaries are taken apart. This is the fundamental reason why binaries are fast,
decomposition can aways be done with O(1) complexity. In rare circumstances this data sharing is however
undesirable, why this function together with copy/ 1 can be useful when optimizing for memory use.

Example of binary sharing:

1> A = binary:copy(<<1>>, 100).
<<1,1,1,1,1 ...

2> byte size(A).

100

3> binary:referenced byte size(A).

100

4> <<B:10/binary, C:90/binary>> = A.

<<1,1,1,1,1 ...

5> {byte size(B), binary:referenced byte size(B)}.
{10,106}

6> {byte size(C), binary:referenced byte size(C)}.
{90,100}

In the above example, the small binary B was copied while the larger binary C references binary A.

62 | Ericsson AB. All Rights Reserved.: STDLIB

binary

Binary data is shared among processes. If another process still references the larger binary, copying the part this
process uses only consumes more memory and does not free up the larger binary for garbage collection. Use this
kind of intrusive functions with extreme care and only if areal problem is detected.

replace(Subject, Pattern, Replacement) -> Result

Types:
Subject = binary()
Pattern = binary() | [binary()] | cp()

Replacement = Result = binary()

Sameasr epl ace(Subj ect, Pattern, Replacenent,[]).

replace(Subject, Pattern, Replacement, Options) -> Result

Types.
Subject = binary()
Pattern = binary() | [binary()] | cp()

Replacement = binary()
Options = [Option]

Option = global | {scope, part()} | {insert replaced, InsPos}
InsPos = OnePos | [OnePos]
OnePos = integer() >= 0

Aninteger() =< byte size(Replacement)

Result = binary()
Constructs anew binary by replacing the partsin Subj ect matching Pat t er n with the content of Repl acenent .
If the matching subpart of Subj ect giving raise to the replacement is to be inserted in the result, option

{insert_replaced, InsPos} insertsthe matching part into Repl acement at the specified position (or
positions) before inserting Repl acemnent into Subj ect .

Example:

1> binary:replace(<<"abcde">>,<<"b">>,<<"[]">>, [{insert replaced,1}]).

<<"a[b]cde">>

2> binary:replace(<<"abcde">>, [<<"b">>,<<"d">>],<<"[]">>, [global, {insert replaced,1}]).
<<"a[b]lc[d]e">>

3> binary:replace(<<"abcde">>, [<<"b">>,<<"d">>],<<"[]">>, [global, {insert replaced,[1,1]}]).
<<"a[bb]c[dd]e">>

4> binary:replace(<<"abcde">>, [<<"b">>,<<"d">>],<<"[-]">>, [global, {insert replaced,[1,2]}]).
<<"a[b-b]c[d-d]e">>

If any position specified in | nsPos > size of the replacement binary, abadar g exception israised.
Optionsgl obal and{scope, part ()} workasforsplit/ 3. Thereturntypeisawaysabi nary().

For adescription of Pat t er n, seeconpi l e_pattern/1

split(Subject, Pattern) -> Parts
Types.

Ericsson AB. All Rights Reserved.: STDLIB | 63

binary

Subject binary()
Pattern = binary() | [binary()] | cp()
Parts = [binary()]

Sameasspl it (Subject, Pattern, []).

split(Subject, Pattern, Options) -> Parts

Types.
Subject = binary()
Pattern = binary() | [binary()] | cp()
Options = [Option]

Option = {scope, part()} | trim | global | trim all
Parts = [binary()]

SplitsSubj ect intoalist of binariesbased on Pat t er n. If option gl obal isnot specified, only thefirst occurrence
of Patt erninSubj ect givesriseto asplit.

The parts of Pat t er n found in Subj ect are not included in the result.
Example:

1> binary:split(<<1,255,4,0,0,0,2,3>>, [<<0,0,0>>,<<2>>],[]).
[<<1,255,4>>, <<2,3>>]

2> binary:split(<<0,1,0,0,4,255,255,9>>, [<<0,0>>, <<255,255>>],[global]).
[<<0,1>>,<<4>>,<<9>>]

Summary of options:

{scope, part()}

Works as in mat ch/ 3 and mat ches/ 3. Notice that this only defines the scope of the search for matching
strings, it does not cut the binary before splitting. The bytes before and after the scope are kept in the result. See
the example below.

trim

Removes trailing empty parts of the result (asdoest ri minre: split/ 3.
trim_all

Removes all empty parts of the resullt.
global

Repeats the split until Subj ect is exhausted. Conceptually option gl obal makes split work on the positions
returned by mat ches/ 3, while it normally works on the position returned by mat ch/ 3.

Example of the difference between a scope and taking the binary apart before splitting:

1> binary:split(<<"banana">>, [<<"a">>],[{scope,{2,3}}]).
[<<"ban">>,<<"na">>]

2> binary:split(binary:part(<<"banana">>,{2,3}), [<<"a">>1,[1).
[<<Ilnll>>'<<llnll>>]

Thereturntypeisawaysalist of binariesthat are al referencing Subj ect . This meansthat the datain Subj ect is
not copied to new binaries, and that Subj ect cannot be garbage collected until the results of the split are no longer
referenced.

For adescription of Pat t er n, seeconpi | e_pattern/1.

64 | Ericsson AB. All Rights Reserved.: STDLIB

C

Erlang module

This module enables users to enter the short form of some commonly used commands.

| These functions are intended for interactive use in the Erlang shell only. The module prefix can be omitted. |

Exports
bt(Pid) -> ok | undefined
Types.

Pid = pid()

Stack backtrace for a process. Equivalent to er | ang: process_di spl ay(Pi d, backtrace).

c(Module) -> {ok, ModuleName} | error
Types.

Module = file:name()

ModuleName = module()

Workslikec(Modul e, []).

c(Module, Options) -> {ok, ModuleName} | error
Types:
Module = file:name()
Options = [compile:option()] | compile:option()
ModuleName = module()

Compiles and then purges and loads the code for a module. Modul e can be either a module name or a source file
path, with or without . er | extension.

If Mbdul e isastring, it is assumed to be a source file path, and the compiler will attempt to compile the source file
with the options Opt i ons. If compilation fails, the old object file (if any) is deleted.

If Modul e is an atom, a source file with that exact name or with . er | extension will be looked for. If found, the
source file is compiled with the options Opt i ons. If compilation fails, the old object file (if any) is deleted.

If Modul e isan atom and is not the path of a sourcefile, then the code path is searched to locate the object file for the
module and extract its original compiler options and source path. If the sourcefileis not found in the original location,
filelib:find_source/1isusedtosearchfor it relative to the directory of the object file.

The source file is compiled with the the original options appended to the given Opt i ons, the output replacing the
old abject file if and only if compilation succeeds.

Noticethat purging the code meansthat any processes lingering in old code for the module are killed without warning.
For more information, see the code module.

c(Module, Options, Filter) -> {ok, ModuleName} | error
Types.

Ericsson AB. All Rights Reserved.: STDLIB | 65

Module = atom()
Options = [compile:option()]
Filter = fun((compile:option()) -> boolean())
ModuleName = module()
Compiles and then purges and loads the code for module Modul e, which must be an atom.

The code path is searched to locate the object file for module Modul e and extract its original compiler options and
source path. If the source file is not found in the original location, fi |l el i b: fi nd_source/ 1 isused to search
for it relative to the directory of the object file.

The source file is compiled with the the original options appended to the given Opt i ons, the output replacing the
old aobject file if and only if compilation succeeds. The function Fi | t er specifies which elements to remove from
the original compiler options before the new options are added. The Fi | t er fun should returnt r ue for options to
keep, and f al se for optionsto remove.

Notice that purging the code meansthat any processes lingering in old code for the modul e are killed without warning.
For more information, see the code module.

cd(Dir) -> ok
Types.
Dir = file:name()

Changes working directory to Di r, which can be a relative name, and then prints the name of the new working
directory.

Example:

2> cd("../erlang").
/home/ron/erlang

erlangrc(PathList) -> {ok, file:filename()} | {error, term()}
Types:

PathList = [Dir :: file:name()]
Search Pat hLi st andload . er | ang resourcefileif found.

flush() -> ok
Flushes any messages sent to the shell.

help() -> ok

Displays help information: all valid shell internal commands, and commands in this module.

h(Module :: module()) -> h return()
Types:
h return() =
ok | {error, missing | {unknown format, unicode:chardata()}}

Print the documentation for Modul e
h(Module :: module(), Function :: function()) -> hf return()

Types:

66 | Ericsson AB. All Rights Reserved.: STDLIB

h return() =
ok | {error, missing | {unknown format, unicode:chardata()}}

hf return() = h_return() | {error, function missing}
Print the documentation for all Modul e: Funct i ons(regardless of arity).

h(Module :: module(), Function :: function(), Arity :: arity()) ->
hf return()

Types:
h return() =
ok | {error, missing | {unknown format, unicode:chardata()}}

hf return() = h _return() | {error, function missing}
Print the documentation for Mbdul e: Function/ Arity.

ht(Module :: module()) -> h return()
Types:
h return() =
ok | {error, missing | {unknown format, unicode:chardata()}}

Print the type documentation for Modul e

ht(Module :: module(), Type :: atom()) -> ht return()
Types:
h return() =
ok | {error, missing | {unknown format, unicode:chardata()}}

ht return() = h_return() | {error, type missing}
Print the type documentation for Ty pe in Modul e regardless of arity.

ht(Module :: module(), Type :: atom(), Arity :: arity()) ->
ht return()

Types.
h return() =
ok | {error, missing | {unknown format, unicode:chardata()}}

ht return() = h _return() | {error, type missing}
Print the type documentation for Type/ Ari ty in Modul e.

i() -> ok
ni() -> ok

i / 0 displays system information, listing information about all processes. ni / 0 does the same, but for all nodes the
network.

i(X, Y, Z) -> [{atom(), term()}]
Types:
X =Y =Z = integer() >= 0

Displaysinformation about a process, Equivalent to pr ocess_i nfo(pi d(X, Y, Z)), butlocation transparent.

Ericsson AB. All Rights Reserved.: STDLIB | 67

1(Module) -> code:load ret()
Types.
Module = module()

Purges and loads, or reloads, a module by caling code: purge(Mdule) followed by
code: | oad_fil e(Modul e).

Noticethat purging the code meansthat any processes lingering in old code for the modul e are killed without warning.
For moreinformation, seecode/ 3.

lc(Files) -> ok

Types.
Files = [File]
File

Compiles alist of filesby caling conpil e:file(File, [report_errors, report_warnings]) for
eachFileinFil es.

For information about Fi | e, seefil e: fil ename().

Im() -> [code:load ret()]

Reloads all currently loaded modules that have changed on disk (see m()). Returns the list of results from calling
I (M for each such M

1s() -> ok
Listsfilesin the current directory.

ls(Dir) -> ok
Types:
Dir = file:name()
Listsfilesin directory Di r or, if Di r isafile, only listsit.

m() -> ok
Displays information about the loaded modules, including the files from which they have been loaded.

m(Module) -> ok
Types:

Module = module()
Displays information about Modul e.

mm() -> [module()]
Lists all modified modules. Shorthand for code: nodi fi ed_nodul es/ 0.

memory() -> [{Type, Size}]
Types.

68 | Ericsson AB. All Rights Reserved.: STDLIB

atom()
integer() >= 0

Type
Size

Memory allocation information. Equivalent to er | ang: menor y/ 0.

memory(Type) -> Size
memory (Types) -> [{Type, Size}]

Types.
Types = [Type]
Type = atom()
Size = integer() >= 0

Memory allocation information. Equivalentto er | ang: nenory/ 1.

nc(File) -> {ok, Module} | error
nc(File, Options) -> {ok, Module} | error
Types:
File = file:name()
Options = [Option] | Option
Option compile:option()
Module = module()
Compiles and then loads the code for afile on al nodes. Opt i ons defaultsto[] . Compilation is equivalent to:

compile:file(File, Options ++ [report errors, report warnings])

nl(Module) -> abcast | error
Types:

Module = module()
Loads Mbdul e on al nodes.

pid(X, Y, Z) -> pid()
Types:
X =Y =Z = integer() >= 0

Converts X, Y, Z to pid <X. Y. Z>. Thisfunction is only to be used when debugging.

pwd() -> ok
Prints the name of the working directory.

q() -> no_return()
Thisfunction isshorthand fori ni t : st op() , that is, it causes the node to stop in a controlled fashion.

regs() -> ok
nregs() -> ok
r egs/ 0 displaysinformation about all registered processes. nr egs/ 0 doesthe same, but for all nodesin the network.

Ericsson AB. All Rights Reserved.: STDLIB | 69

uptime() -> ok

Prints the node uptime (as specified by er | ang: st ati sti cs(wal | _cl ock)) in human-readable form.

xm(ModSpec) -> void()
Types:
MbdSpec Modul e | Fil enane
Modul e = atom()
Fil ename = string()

Finds undefined functions, unused functions, and calls to deprecated functionsin amodule by calling xr ef : n1 1.

y(File) -> YeccRet
Types:
File = nane()
YeccRet
Generates an LALR-1 parser. Equivalent to:
yecc:file(File)
For information about File = nane(), see filenanme(3). For information about YeccRet, see

yecc: filel?2.

y(File, Options) -> YeccRet
Types.
File = nane()
Options, YeccRet
Generates an LALR-1 parser. Equivalent to:
yecc:file(File, Options)
For information about Fi | e = name(), seefi | enanme(3) . For information about Opt i ons and YeccRet
seeyecc: fil el 2.
See Also
filenane(3),conpile(3),erlang(3),yecc(3),xref(3)

70 | Ericsson AB. All Rights Reserved.: STDLIB

calendar

calendar

Erlang module

This module provides computation of local and universal time, day of the week, and many time conversion functions.

Timeisloca whenit isadjusted in accordance with the current time zone and daylight saving. Timeisuniversal when
it reflects the time at longitude zero, without any adjustment for daylight saving. Universal Coordinated Time (UTC)
timeis also called Greenwich Mean Time (GMT).

The time functions| ocal _ti me/ 0 and uni ver sal _ti ne/ 0 in this module both return date and time. Thisis
because separate functions for date and time can result in a date/time combination that is displaced by 24 hours. This
occursif one of the functionsis called before midnight, and the other after midnight. This problem also appliesto the
Erlang BIFsdat e/ 0 andt i ne/ 0, and their useis strongly discouraged if areliable date/time stamp is required.

All dates conform to the Gregorian calendar. This calendar was introduced by Pope Gregory XlII in 1582 and was
used in all Catholic countries from this year. Protestant parts of Germany and the Netherlands adopted it in 1698,
England followed in 1752, and Russia in 1918 (the October revolution of 1917 took place in November according
to the Gregorian calendar).

The Gregorian calendar in this module is extended back to year 0. For agiven date, the gregorian days is the number
of days up to and including the date specified. Similarly, the gregorian seconds for a specified date and time is the
number of seconds up to and including the specified date and time.

For computing differences between epochsin time, use the functions counting gregorian days or seconds. If epochsare
specified aslocal time, they must be converted to universal time to get the correct value of the elapsed time between
epochs. Use of functiont i ne_di f f er ence/ 2 isdiscouraged.

Different definitionsexist for theweek of theyear. Thismodule containsaweek of theyear implementation conforming
to the 1SO 8601 standard. As the week number for a specified date can fall on the previous, the current, or on the
next year, it is important to specify both the year and the week number. Functions i so_week _nunber/ 0 and
i so_week_nunber/ 1 return atuple of the year and the week number.

Data Types

datetime() = {date(), time()}

datetimel970() = {{yearl970(), month(), day()}, time()}
date() {year(), month(), day()}

year() integer() >= 0

Y ear cannot be abbreviated. For example, 93 denotes year 93, not 1993. The valid range depends on the underlying
operating system. The date tuple must denote avalid date.

Ericsson AB. All Rights Reserved.: STDLIB | 71

calendar

yearl970() = 1970..10000

month() = 1..12

day() = 1..31

time() = {hour(), minute(), second()}
hour() = 0..23

minute() = 0..59

second() = 0..59

daynum() = 1..7

ldom() = 28 | 29 | 30 | 31

yearweeknum() = {year(), weeknum()}
weeknum() = 1..53

Exports

date to gregorian days(Date) -> Days
date to gregorian days(Year, Month, Day) -> Days
Types.
Date = date()
Year = year()
Month = month()
Day = day()
Computes the number of gregorian days starting with year 0 and ending at the specified date.

datetime to gregorian seconds(DateTime) -> Seconds
Types:

DateTime = datetime()

Seconds = integer() >= 0

Computes the number of gregorian seconds starting with year 0 and ending at the specified date and time.

day of the week(Date) -> daynum()
day of the week(Year, Month, Day) -> daynum()

Types:
Date = date()
Year = year()
Month = month()
Day = day()

Computesthe day of the week from the specified Year , Mont h, and Day . Returnsthe day of theweek as 1: Monday,
2: Tuesday, and so on.

gregorian days to date(Days) -> date()
Types:

Days = integer() >= 0
Computes the date from the specified number of gregorian days.

72 | Ericsson AB. All Rights Reserved.: STDLIB

calendar

gregorian_seconds to datetime(Seconds) -> datetime()
Types:

Seconds = integer() >= 0
Computes the date and time from the specified number of gregorian seconds.

is leap year(Year) -> boolean()
Types:

Year = year()
Checksif the specified year isaleap year.

iso week number() -> yearweeknum()

Returnstuple { Year, WeekNun} representing the ISO week number for the actua date. To determine the actual
date, usefunction| ocal _ti me/ 0.

iso week number(Date) -> yearweeknum()
Types:
Date = date()
Returnstuple{ Year, WeekNumn} representing the SO week number for the specified date.

last day of the month(Year, Month) -> LastDay
Types:

Year = year()

Month = month()

LastDay = ldom()

Computes the number of daysin amonth.

local time() -> datetime()
Returns the local time reported by the underlying operating system.

local time to universal time(DateTimel) -> DateTime2
Types:
DateTimel = DateTime2 = datetimel970()

Converts from local time to Universal Coordinated Time (UTC). Dat eTi mel must refer to alocal date after Jan
1, 1970.

This function is deprecated. Use | ocal _tine_to_universal _tine_dst/1 instead, as it gives a more
correct and complete result. Especially for the period that does not exist, as it is skipped during the switch to
daylight saving time, this function still returns aresult.

local time to universal time dst(DateTimel) -> [DateTime]
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 73

calendar

DateTimel = DateTime = datetimel970()

Converts from local time to Universal Coordinated Time (UTC). Dat eTi mel must refer to alocal date after Jan
1, 1970.

Thereturn valueisalist of 0, 1, or 2 possible UTC times:

[]

For alocal { Dat el, Ti mel} during the period that is skipped when switching to daylight saving time, there
isno corresponding UTC, asthelocal timeisillegal (it has never occured).

[Dst Dat eTi neUTC, Dat eTi neUTC]

For alocal { Dat el, Ti mel} during the period that is repeated when switching from daylight saving time,
two corresponding UTCs exist; one for the first instance of the period when daylight saving time is still active,
and one for the second instance.

[Dat eTi neUTC]

For all other local times only one corresponding UTC exists.

now to datetime(Now) -> datetimel970()
Types:
Now = erlang:timestamp()
Returns Universal Coordinated Time (UTC) converted from thereturn valuefromer | ang: t i mest anp/ 0.

now_to local time(Now) -> datetimel970()
Types:
Now = erlang:timestamp()
Returnslocal date and time converted from the return valuefrom er | ang: ti nest anp/ 0.

now_to universal time(Now) -> datetimel970()
Types:
Now = erlang:timestamp()
Returns Universal Coordinated Time (UTC) converted from the return valuefromer | ang: ti mest anp/ 0.

rfc3339 to system time(DateTimeString) -> integer()
rfc3339 to system time(DateTimeString, Options) -> integer()
Types:

DateTimeString = rfc3339 string()

Options = [Option]

Option = {unit, rfc3339 time unit()}

rfc3339 string() = [byte(), ...]

rfc3339 time unit() =

microsecond | millisecond | nanosecond | second

Converts an RFC 3339 timestamp into system time. The data format of RFC 3339 timestamps is described by RFC
3339.

Valid option:

74 | Ericsson AB. All Rights Reserved.: STDLIB

href
href

calendar

{unit, Unit}

The time unit of the return value. The defaultissecond.

1> calendar:rfc3339 to system time("2018-02-01T16:17:58+01:00").

1517498278

2> calendar:rfc3339 to system time("2018-02-01 15:18:02.0882",
[{unit, nanosecond}]).

1517498282088000000

seconds to daystime(Seconds) -> {Days, Time}
Types.

Seconds = Days = integer()

Time = time()

Converts a specified number of seconds into days, hours, minutes, and seconds. Ti e is always non-negative, but
Days isnegative if argument Seconds is.

seconds _to time(Seconds) -> time()
Types.
Seconds = secs per _day()
secs_per_day() = 0..86400

Computes the time from the specified number of seconds. Seconds must be less than the number of seconds per
day (86400).

system time to local time(Time, TimeUnit) -> datetime()
Types:

Time = integer()

TimeUnit = erlang:time unit()
Converts a specified system timeinto local date and time.

system time to rfc3339(Time) -> DateTimeString
system time to rfc3339(Time, Options) -> DateTimeString
Types:
Time = integer()
Options = [Option]
Option =
{offset, offset()} |
{time designator, byte()} |
{unit, rfc3339 time unit()}

DateTimeString = rfc3339 string()
offset() = [byte()] | (Time :: integer())
rfc3339 string() = [byte(), ...]
rfc3339 time unit() =
microsecond | millisecond | nanosecond | second

Converts a system time into an RFC 3339 timestamp. The data format of RFC 3339 timestamps is described by RFC
3339. The data format of offsetsis aso described by RFC 3339.

Ericsson AB. All Rights Reserved.: STDLIB | 75

href
href

calendar

Valid options:
{offset, Ofset}

The offset, either a string or an integer, to be included in the formatted string. An empty string, which is the
default, isinterpreted aslocal time. A non-empty string isincluded as is. The time unit of the integer is the same
astheoneof Ti ne.

{tinme_designator, Character}
The character used as time designator, that is, the date and time separator. The default is $T.
{unit, Unit}

Thetime unit of Ti me. The default issecond. If some other unitisgiven (mi | |1 i second, ni cr osecond,
or nanosecond), the formatted string includes a fraction of a second. The number of fractional second digits
isthree, six, or nine depending on what time unit is chosen. Notice that trailing zeros are not removed from the
fraction.

1> calendar:system time to rfc3339(erlang:system time(second)).

"2018-04-23T14:56:28+02:00"

2> calendar:system time to rfc3339(erlang:system time(second),
[{offset, "-02:00"}]).

"2018-04-23T10:56:52-02:00"

3> calendar:system time to rfc3339(erlang:system time(second),
[{offset, -7200}]).

"2018-04-23T10:57:05-02:00"

4> calendar:system time to rfc3339(erlang:system time(millisecond),
[{unit, millisecond}, {time designator, $\s}, {offset, "Z"}1]).

"2018-04-23 12:57:20.482Z"

system time to universal time(Time, TimeUnit) -> datetime()
Types.

Time = integer()

TimeUnit = erlang:time unit()
Converts a specified system time into universal date and time.

time difference(T1l, T2) -> {Days, Time}
Types:
Tl = T2 = datetime()
Days = integer()
Time = time()
Returns the difference betweentwo { Dat e, Ti ne} tuples. T2 isto refer to an epoch later than T1.

‘ Thisfunction is obsolete. Use the conversion functions for gregorian days and seconds instead. ‘

time_to seconds(Time) -> secs per_day()
Types:

76 | Ericsson AB. All Rights Reserved.: STDLIB

calendar

Time = time()
secs _per_day() = 0..86400
Returns the number of seconds since midnight up to the specified time.

universal time() -> datetime()

Returns the Universal Coordinated Time (UTC) reported by the underlying operating system. Returns local time if
universal timeis unavailable.

universal time to local time(DateTime) -> datetime()
Types.
DateTime = datetimel970()
Converts from Universal Coordinated Time (UTC) to local time. Dat eTi me must refer to a date after Jan 1, 1970.

valid date(Date) -> boolean()
valid date(Year, Month, Day) -> boolean()
Types:

Date = date()

Year = Month = Day = integer()

This function checks if adateisavalid.

Leap Years

The notion that every fourth year is aleap year is not completely true. By the Gregorian rule, ayear Y is aleap year
if one of the following rulesisvalid:

e Y isdivisible by 4, but not by 100.

* Y isdivisible by 400.

Hence, 1996 isaleap year, 1900 is not, but 2000 is.

Date and Time Source

Local time is obtained from the Erlang BIF | ocal ti me/ 0. Universal time is computed from the BIF
uni versal tine/0.

The following apply:

e Thereare 86400 secondsin a day.

e Thereare 365 daysin an ordinary year.

* Thereare 366 daysin aleap year.

e Thereare 1461 daysin a4 year period.

e Thereare 36524 daysin a 100 year period.

e Thereare 146097 daysin a 400 year period.

e Thereare 719528 days between Jan 1, 0 and Jan 1, 1970.

Ericsson AB. All Rights Reserved.: STDLIB | 77

dets

dets

Erlang module

This module provides aterm storage on file. The stored terms, in this module called objects, are tuples such that one
element isdefined to bethekey. A Detstableisacollection of objectswith the key at the same position stored on afile.

Thismoduleis used by the Mnesiaapplication, and is provided "asis" for userswho are interested in efficient storage
of Erlang terms on disk only. Many applications only need to store some terms in a file. Mnesia adds transactions,
queries, and distribution. The size of Dets files cannot exceed 2 GB. If larger tables are needed, table fragmentation
in Mnesia can be used.

Three types of Dets tables exist:

e set. A table of thistype has at most one object with a given key. If an object with akey aready present in the
table isinserted, the existing object is overwritten by the new object.

* bag. A table of thistype has zero or more different objects with a given key.

e duplicate_bag. A table of thistype has zero or more possibly matching objects with a given key.

Dets tables must be opened before they can be updated or read, and when finished they must be properly closed. If a

table is not properly closed, Dets automatically repairs the table. This can take a substantial time if the tableis large.

A Detstableis closed when the process which opened the table terminates. If many Erlang processes (users) open the

same Dets table, they share the table. The table is properly closed when all users have either terminated or closed the
table. Dets tables are not properly closed if the Erlang runtime system terminates abnormally.

A ~C command abnormally terminates an Erlang runtime system in a Unix environment with a break-handler.

As al operations performed by Dets are disk operations, it is important to realize that a single look-up operation
involvesaseriesof disk seek and read operations. The Detsfunctions are therefore much slower than the corresponding
et s(3) functions, although Dets exports a similar interface.

Dets organizes dataas alinear hash list and the hash list grows gracefully as more dataisinserted into the table. Space
management on the file is performed by what is called a buddy system. The current implementation keeps the entire
buddy system in RAM, which implies that if the table gets heavily fragmented, quite some memory can be used up.
The only way to defragment atable isto close it and then open it again with option r epai r settof or ce.

Notice that type or der ed_set in Etsis not yet provided by Dets, neither is the limited support for concurrent
updates that makes a sequence of fi r st and next calls safe to use on fixed ETS tables. Both these features may
be provided by Detsin afuture release of Erlang/OTP. Until then, the Mnesia application (or some user-implemented
method for locking) must be used to implement safe concurrency. Currently, no Erlang/OTP library has support for
ordered disk-based term storage.

All Detsfunctionsreturn{ error, Reason} if anerror occurs(first/ 1 and next/ 2 are exceptions, they exit
the processwith the error tuple). If badly formed arguments are specified, al functions exit the processwith abadar g

message.

Data Types

access() = read | read write

auto save() = infinity | integer() >= 0
bindings cont()

Opaque continuation used by mat ch/ 1 and mat ch/ 3.

78 | Ericsson AB. All Rights Reserved.: STDLIB

dets

cont()

Opaque continuation used by bchunk/ 2.
keypos() = integer() >=1
match spec() = ets:match spec()

Match specifications, see section Match Specification in Erlang in ERTS User's Guide and thems _t r ansf or n{ 3)
module.

no slots() = default | integer() >= 0

object() = tuple()

object cont()

Opaque continuation used by mat ch_obj ect/ 1 and mat ch_obj ect/ 3.
pattern() = atom() | tuple()

For a description of patterns, seeet s: mat ch/ 2.

select cont()

Opague continuation used by sel ect/ 1 and sel ect/ 3.

tab name() = term()
type() = bag | duplicate bag | set

Exports

all() -> [tab name()]
Returns alist of the names of all open tables on this node.

bchunk(Name, Continuation) ->
{Continuation2, Data} |
'$end of table' |
{error, Reason}
Types:
Name = tab name()
Continuation = start | cont()
Continuation2 = cont()
Data = binary() | tuple()
Reason = term()
Returns a list of objects stored in a table. The exact representation of the returned objects is not public. The lists of
data can be used for initializing atable by specifying value bchunk to optionf or mat of functioni ni t _t abl e/ 3
The Mnesia application uses this function for copying open tables.

Unless the table is protected using saf e_fi xt abl e/ 2, calsto bchunk/ 2 do possibly not work as expected if
concurrent updates are made to the table.

Thefirst timebchunk/ 2 iscalled, an initial continuation, the atom st ar t , must be provided.

bchunk/ 2 returns atuple { Cont i nuati on2, Dat a}, where Dat a isalist of objects. Conti nuati on2 is
another continuation that is to be passed on to a subsequent call to bchunk/ 2. With a series of callsto bchunk/ 2,
all table objects can be extracted.

bchunk/ 2 returns' $end_of _t abl e' when al objectsarereturned, or { error, Reason} if anerror occurs.

Ericsson AB. All Rights Reserved.: STDLIB | 79

dets

close(Name) -> ok | {error, Reason}
Types.
Name = tab name()
Reason = term()
Closes atable. Only processes that have opened atable are allowed to close it.

All open tables must be closed before the system is stopped. If an attempt is made to open atable that is not properly
closed, Dets automatically triesto repair it.

delete(Name, Key) -> ok | {error, Reason}
Types:

Name = tab name()

Key = Reason = term()

Deletes al objects with key Key from table Nane.

delete all objects(Name) -> ok | {error, Reason}
Types:

Name = tab name()

Reason = term()

Deletes all objectsfrom atablein amost constant time. However, if thetableif fixed, del et e_al | _obj ect s(T)
isequivalenttomat ch_del ete(T, ' _').

delete object(Name, Object) -> ok | {error, Reason}
Types.

Name = tab name()

Object = object()

Reason = term()

Deletes all instances of a specified object from atable. If atableis of type bag or dupl i cat e_bag, this function
can be used to delete only some of the objects with a specified key.

first(Name) -> Key | '$end of table'

Types.
Name = tab name()
Key = term()

Returns the first key stored in table Nane according to the internal order of thetable, or * $end_of t abl e' if the
tableis empty.

Unless the table is protected using saf e_fi xt abl e/ 2, subsequent calls to next /2 do possibly not work as
expected if concurrent updates are made to the table.

If an error occurs, the process is exited with an error tuple { error, Reason}. The error tupleis not returned, as
it cannot be distinguished from a key.

Therearetwo reasonswhy f i r st/ 1 and next / 2 are not to be used: they are not efficient, and they prevent the use
of key ' $end_of _t abl e' , asthisatom is used to indicate the end of the table. If possible, use functions mat ch,
mat ch_obj ect ,and sel ect for traversing tables.

80 | Ericsson AB. All Rights Reserved.: STDLIB

dets

foldl(Function, AccO, Name) -> Acc | {error, Reason}
foldr(Function, AccO, Name) -> Acc | {error, Reason}
Types:

Name = tab name()

Function = fun((Object :: object(), AccIn) -> AccOut)

AccO = Acc = AccIn = AccOut = Reason = term()

CdlsFunct i on on successive elements of table Nane together with an extraargument Accl n. Thetable elements
are traversed in unspecified order. Funct i on must return a new accumulator that is passed to the next call. Acc0
isreturned if the table is empty.

from ets(Name, EtsTab) -> ok | {error, Reason}

Types:
Name = tab name()
EtsTab = ets:tab()
Reason = term()

Deletes all objects of table Nare and then inserts all the objects of the ETS table Et sTab. The objects are inserted
in unspecified order. Aset s: saf e_fi xt abl e/ 2 iscalled, the ETS table must be public or owned by the calling
process.

info(Name) -> InfolList | undefined
Types:

Name = tab name()

InfoList = [InfoTuple]

InfoTuple =
{file size, integer() >= 0} |
{filename, file:name()} |

{keypos, keypos()} |
{size, integer() >= 0} |

{type, type()}
Returns information about table Nanme asalist of tuples:
o {file_size, integer() >= 0}} - Thefilesize, in bytes.
e {filename, file:name()} - Thename of thefile where objects are stored
« {keypos, keypos()} - Thekey position.
e {size, integer() >= 0} - Thenumber of objects stored in the table.
« {type, type()} - Thetabletype.

info(Name, Item) -> Value | undefined
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 81

dets

Name = tab name()

Item =
access | auto save | bchunk format | hash | file size |
filename | keypos | memory | no _keys | no objects | no slots |
owner | ram file | safe fixed | safe fixed monotonic time |
size | type

Value = term()

Returns the information associated with | t emfor table Nane. In addition tothe {1t em Val ue} pairs defined
fori nf o/ 1, the following items are allowed:

{access, access()} - Theaccess mode.
{auto_save, auto_save()} - Theautosaveinterval.

{bchunk format, binary()} - An opaque binary describing the format of the objects returned by
bchunk/ 2. The binary can be used asargumenttoi s_conpati bl e_chunk_fornat/ 2.

{hash, Hash} - Describes which BIF is used to calculate the hash values of the objects stored in the Dets
table. Possible values of Hash:

e phash - Impliesthat theer | ang: phash/ 2 BIF isused.

* phash2 - Impliesthat theer | ang: phash2/ 1 BIFis used.

{menory, integer() >= 0} - Thefilesize, inbytes. The samevalueisassociated withitemfi | e_si ze.
{no_keys, integer >= 0()} - Thenumber of different keys stored in the table.

{no_objects, integer >= 0()} - Thenumber of objects stored in the table.

{no_slots, {Mn, Used, Max}} - The number of dots of the table. M n is the minimum number of
dots, Used isthe number of currently used slots, and Max is the maximum number of slots.

{owner, pid()} - Thepid of the process that handles requests to the Dets table.

{ramfile, boolean()} - Whetherthetableiskeptin RAM.

{safe_fixed_nonotonic_tine, Saf eFi xed} - If the table is fixed, Saf eFi xed is a tuple
{Fi xedAt Ti me, [{Pid, Ref Count}]}.Fi xedAt Ti me is the time when the table was first fixed, and

Pi d isthe pid of the process that fixes the table Ref Count times. There can be any number of processesin the
list. If thetableis not fixed, Saf eFi xed istheatom f al se.

Fi xedAt Ti me corresponds to the result returned by er | ang: nonot oni ¢_t i ne/ O at the time of fixation.
Theuseof saf e_fi xed_nonot oni c_t i ne istimewarp safe.

{safe fixed, SafeFixed} -Thesameas{safe fixed nonotonic_tine, SafeFixed} except
the format and value of Fi xedAt Ti ne.

Fi xedAt Ti me corresponds to the result returned by er | ang: t i mest anp/ 0 at the time of fixation. Notice
that when the system uses single or multi time warp modes, this can produce strange results. This is because the
useof saf e_fi xed isnot timewarp safe. Time warp safe code must usesaf e_fi xed_nonot oni c_ti ne
instead.

init table(Name, InitFun) -> ok | {error, Reason}
init table(Name, InitFun, Options) -> ok | {error, Reason}
Types.

82 | Ericsson AB. All Rights Reserved.: STDLIB

dets

Name = tab name()
InitFun = fun((Arg) -> Res)
Arg = read | close
Res =
end of input |
{[object ()], InitFun} |
{Data, InitFun} |
term()
Options = Option | [Option]
Option = {min_no_slots, no_slots()} | {format, term | bchunk}
Reason = term()
Data = binary() | tuple()
Replaces the existing objects of table Nare with objects created by calling the input function | ni t Fun, see below.

The reason for using this function rather than calling i nser t / 2 isthat of efficiency. Notice that the input functions
are called by the process that handles requests to the Dets table, not by the calling process.

When called with argument r ead, function | ni t Fun isassumed to returnend_of _i nput when thereisno more
input, or { Obj ects, Fun},where Obj ect s isalist of objects and Fun isanew input function. Any other value
Val ue isreturned asanerror {error, {init_fun, Value}}.Eachinputfunctioniscalled exactly once, and
if an error occurs, the last function is called with argument ¢l ose, the reply of which isignored.

If the table type is set and more than one object exists with a given key, one of the objects is chosen. This is not
necessarily thelast object with the given key in the sequence of objectsreturned by theinput functions. Avoid duplicate
keys, otherwise the file becomes unnecessarily fragmented. This holds also for duplicated objects stored in tables of
typebag.

It is important that the table has a sufficient number of dlots for the objects. If not, the hash list starts to grow when
i nit_tabl e/ 2 returns, which significantly slows down access to the table for a period of time. The minimum
number of dotsisset by theopen _fil e/ 2 optionni n_no_sl ot s andreturned by thei nf o/ 2 itemno_sl ot s.
Seeasooptionni n_no_sl ot s below.

Argument Opt i ons isalist of { Key, Val} tuples, wherethe following values are alowed:

e {mn_no_slots, no_slots()} - Specifiesthe estimated number of different keysto be storedin thetable.
Theopen_fi | e/ 2 optionwith the same nameisignored, unlessthe tableis created, in which case performance
can be enhanced by supplying an estimate when initializing the table.

« {format, Format} - Specifiestheformat of the objectsreturned by function| ni t Fun. If For mat ist erm
(the default), | ni t Fun is assumed to return a list of tuples. If For mat isbchunk, | ni t Fun is assumed to
return Dat a asreturned by bchunk/ 2. This option overridesoptionm n_no_sl ot s.

insert(Name, Objects) -> ok | {error, Reason}
Types:

Name = tab name()

Objects = object() | [object()]

Reason = term()

Inserts one or more objects into the table Nane. If there already exists an object with a key matching the key of some
of the given objects and the table typeis set , the old object will be replaced.

insert new(Name, Objects) -> boolean() | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 83

dets

Name = tab name()
Objects = object() | [object()]
Reason = term()
Inserts one or more objects into table Nane. If there already exists some object with a key matching the key of any

of the specified objects, the tableis not updated and f al se isreturned. Otherwise the objects areinserted and t r ue
returned.

is compatible bchunk format(Name, BchunkFormat) -> boolean()
Types:
Name = tab name()
BchunkFormat = binary()
Returns true if it would be possible to initidize table Nanme, using i nit_table/3 with option

{format, bchunk}, with objects read with bchunk/2 from some table T, such that calling
i nfo(T, bchunk_format) returnsBchunkFor mat .

is dets file(Filename) -> boolean() | {error, Reason}
Types:

Filename = file:name()

Reason = term()

Returnst r ue if fileFi | enane isaDetstable, otherwisef al se.

lookup (Name, Key) -> Objects | {error, Reason}

Types:
Name = tab name()
Key = term()

Objects = [object()]
Reason = term()
Returnsalist of all objects with key Key stored in table Nane, for example:

2> dets:open_file(abc, [{type, bag}l).
{ok,abc}

3> dets:insert(abc, {1,2,3}).

ok

4> dets:insert(abc, {1,3,4}).

ok

5> dets:lookup(abc, 1).
[{1,2,3},{1,3,4}]

If thetabletypeisset , thefunction returns either the empty list or alist with one object, as there cannot be more than
oneobject withagivenkey. If thetabletypeisbag ordupl i cat e_bag, thefunctionreturnsalist of arbitrary length.

Notice that the order of objects returned is unspecified. In particular, the order in which objects were inserted is not
reflected

match(Continuation) ->
{[Match], Continuation2} |
'$end of table' |

84 | Ericsson AB. All Rights Reserved.: STDLIB

dets

{error, Reason}

Types.
Continuation =
Match = [term()

Reason = term()

Continuation2 = bindings cont()
]

Matches some objects stored in a table and returns a non-empty list of the bindings matching a specified pattern
in some unspecified order. The table, the pattern, and the number of objects that are matched are al defined by
Cont i nuat i on, which has been returned by a previous call tomat ch/ 1 or mat ch/ 3.

When all table objects are matched, ' $end_of _t abl e' isreturned.

match(Name, Pattern) -> [Match] | {error, Reason}
Types:
Name = tab name()
Pattern = pattern()
Match = [term()]
Reason = term()
Returns for each object of table Nane that matches Pat t er n alist of bindings in some unspecified order. For a

description of patterns, see et s: mat ch/ 2. If the keyposth element of Pat t er n is unbound, all table objects are
matched. If the keyposth element is bound, only the objects with the correct key are matched.

match(Name, Pattern, N) ->
{[Match], Continuation} |
'$end of table' |
{error, Reason}

Types:
Name = tab name()
Pattern = pattern()
N = default | integer() >= 0
Continuation = bindings cont()
Match = [term()]
Reason = term()

Matches some or all objects of table Nane and returns a non-empty list of the bindings that match Pat t er n in some
unspecified order. For adescription of patterns, seeet s: mat ch/ 2.

A tuple of the bindings and a continuation is returned, unless the table is empty, in which case' $end_of _t abl €'
isreturned. The continuation is to be used when matching further objects by calling mat ch/ 1.

If the keyposth element of Pat t er n is bound, all table objects are matched. If the keyposth element is unbound,
all table objects are matched, N objects at atime, until at least one object matches or the end of the table is reached.
The default, indicated by giving N the value def aul t , isto let the number of objects vary depending on the sizes
of the objects. All objects with the same key are always matched at the same time, which implies that more than N
objects can sometimes be matched.

Thetableis alwaysto be protected using saf e_f i xt abl e/ 2 before calling mat ch/ 3, otherwise errors can occur
when calling mat ch/ 1.

match delete(Name, Pattern) -> ok | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 85

dets

Name = tab name()
Pattern = pattern()
Reason = term()

Deletes all objects that match Pat t er n from table Narnre. For a description of patterns, seeet s: mat ch/ 2.
If the keyposth element of Pat t er n isbound, only the objects with the correct key are matched.

match object(Continuation) ->
{Objects, Continuation2} |
'$end of table' |
{error, Reason}
Types:
Continuation = Continuation2 = object cont()
Objects = [object()]
Reason = term()
Returns a non-empty list of some objects stored in a table that match a given pattern in some unspecified order. The
table, the pattern, and the number of objects that are matched are al defined by Cont i nuat i on, which has been
returned by a previous call tomat ch_obj ect/ 1 or mat ch_obj ect/ 3.

When all table objects are matched, ' $end_of _t abl e' isreturned.

match _object(Name, Pattern) -> Objects | {error, Reason}
Types:

Name = tab name()

Pattern = pattern()

Objects = [object()]

Reason = term()

Returnsalist of all objectsof table Nane that match Pat t er n in some unspecified order. For adescription of patterns,
seeet s: match/ 2.

If the keyposth element of Pat t er n isunbound, all table objects are matched. If the keyposth element of Pat t er n
is bound, only the objects with the correct key are matched.

Using the mat ch_obj ect functions for traversing all table objects is more efficient than calling fi rst/ 1 and
next/2orslot/2

match object(Name, Pattern, N) ->
{Objects, Continuation} |
‘$end of table' |
{error, Reason}

Types:

86 | Ericsson AB. All Rights Reserved.: STDLIB

dets

Name = tab name()

Pattern = pattern()

N = default | integer() >= 0
Continuation = object cont()
Objects = [object()]

Reason = term()

Matches some or all objects stored in table Nane and returns a non-empty list of the objects that match Pat t er n in
some unspecified order. For a description of patterns, seeet s: mat ch/ 2.

A list of objects and a continuation is returned, unless the table is empty, in which case ' $end_of _t abl e' is
returned. The continuation is to be used when matching further objects by calling mat ch_obj ect/ 1.

If the keyposth element of Pat t er n is bound, all table objects are matched. If the keyposth element is unbound,
all table objects are matched, N objects at atime, until at least one object matches or the end of the table is reached.
The default, indicated by giving Nthe value def aul t , isto let the number of objects vary depending on the sizes of
the objects. All matching objects with the same key are always returned in the same reply, which implies that more
than N objects can sometimes be returned.

Thetableisawaysto be protected using saf e _fi xt abl e/ 2 before calling mat ch_obj ect / 3, otherwise errors
can occur when calling mat ch_obj ect/ 1.

member(Name, Key) -> boolean() | {error, Reason}
Types.

Name = tab name()

Key = Reason = term()

Works like | ookup/ 2, but does not return the objects. Returnst r ue if one or more table elements has key Key,
otherwisef al se.

next(Name, Keyl) -> Key2 | '$end of table'
Types.

Name = tab name()

Keyl = Key2 = term()

Returns either the key following Keyl in table Nane according to the internal order of the table, or
" $end_of _t abl e' if thereisno next key.

If an error occurs, the processis exited with an error tuple{ er r or, Reason}.
To find thefirst key in thetable, usefi rst/ 1.

open file(Filename) -> {ok, Reference} | {error, Reason}
Types:

Filename = file:name()

Reference = reference()

Reason = term()

Opens an existing table. If the table is not properly closed, it is repaired. The returned reference is to be used as the
table name. This function is most useful for debugging purposes.

Ericsson AB. All Rights Reserved.: STDLIB | 87

dets

open file(Name, Args) -> {ok, Name} | {error, Reason}

Types:
Name = tab name()
Args = [OpenArg]
OpenArg =

{access, access()} |
{auto save, auto save()} |
{estimated no objects, integer() >= 0} |
{file, file:name()} |
{max_no_slots, no slots()} |
{min no slots, no slots()} |
{keypos, keypos()} |
{ram_file, boolean()} |
{repair, boolean() | force} |
{type, type()}

Reason = term()

Opens atable. An empty Detstableis created if no file exists.

The atom Nane is the table name. The table name must be provided in all subsequent operations on the table. The
name can be used by other processes as well, and many processes can share one table.

If two processes open the same table by giving the same name and arguments, the table has two users. If one user
closes the table, it remains open until the second user closesiit.

Argument Ar gs isalist of { Key, Val} tuples, wherethe following values are allowed:

{access, access()} - Existing tables can be opened in read-only mode. A table that is opened in read-
only mode is not subjected to the automatic file reparation algorithm if it is later opened after a crash. Defaults
toread wite.

{aut o_save, auto_save()} - Theautosaveinterval. If theinterval isaninteger Ti ne, thetableisflushed
to disk whenever it is not accessed for Ti me milliseconds. A table that has been flushed requires no reparation
when reopened after an uncontrolled emulator halt. If the interval isthe atom i nf i ni t y, autosave is disabled.
Defaults to 180000 (3 minutes).

{estimated_no_objects, no_slots()} -Equivaenttooptionm n_no_sl ot s.
{file, file:nanme()} - Thenameof thefileto be opened. Defaults to the table name.
{max_no_slots, no_slots()} - Themaximum number of sotsto be used. Defaultsto 32 M, whichisthe

maximal value. Notice that a higher value can increase the table fragmentation, and a smaller value can decrease
the fragmentation, at the expense of execution time.

{m n_no_slots, no_slots()} -Application performance can be enhanced with this flag by specifying,
when the table is created, the estimated number of different keysto be stored in the table. Defaults to 256, which
is the minimum value.

{keypos, keypos()} - The position of the element of each object to be used as key. Defaults to 1. The
ability to explicitly state the key position is most convenient when we want to store Erlang records in which the
first position of the record is the name of the record type.

{ramfile, boolean()} - Whether thetableisto be keptin RAM. Keeping the table in RAM can sound
like an anomaly, but can enhance the performance of applications that open atable, insert a set of objects, and
then close the table. When the table is closed, its contents are written to the disk file. Defaultsto f al se.
{repair, Value} -Val ue canbeeither abool ean() or theatom f or ce. The flag specifiesif the Dets
server isto invoke the automatic file reparation algorithm. Defaultsto t r ue. If f al se is specified, no attempt

88 | Ericsson AB. All Rights Reserved.: STDLIB

dets

is made to repair the file, and { error, {needs_repair, FileNane}} isreturnedif the table must be
repaired.

Valuef or ce meansthat areparation is made even if thetableis properly closed. Thisisaseldom needed option.

Optionr epai r isignored if the tableis already open.
« {type, type()} - Thetabletype. Defaultstoset .

pid2name(Pid) -> {ok, Name} | undefined
Types:

Pid = pid()

Name = tab name()

Returns the table name given the pid of a process that handles requests to atable, or undef i ned if thereis no such
table.

Thisfunction is meant to be used for debugging only.

repair_continuation(Continuation, MatchSpec) -> Continuation2
Types:

Continuation = Continuation2 = select cont()

MatchSpec = match spec()

Thisfunction can be used to restore an opaque continuation returned by sel ect / 3 or sel ect / 1 if the continuation
has passed through external term format (been sent between nodes or stored on disk).

The reason for this function is that continuation terms contain compiled match specifications and therefore are
invalidated if converted to external term format. Given that the origina match specification is kept intact, the
continuation can be restored, meaning it can once again be used in subsequent sel ect / 1 calls even though it has
been stored on disk or on another node.

For more information and examples, seetheet s(3) module.

This function is rarely needed in application code. It is used by application Mnesia to provide distributed
sel ect/ 3 andsel ect/ 1 sequences. A normal application would either use Mnesia or keep the continuation
from being converted to external format.

The reason for not having an external representation of compiled match specifications is performance. It can be
subject to change in future releases, while this interface remains for backward compatibility.

safe fixtable(Name, Fix) -> ok
Types:

Name = tab name()

Fix = boolean()

If Fi x istrue, table Nane is fixed (once more) by the calling process, otherwise the table isreleased. The tableis
also released when a fixing process terminates.

If many processes fix a table, the table remains fixed until al processes have released it or terminated. A reference
counter is kept on a per process basis, and N consecutive fixes require N rel eases to release the table.

Ericsson AB. All Rights Reserved.: STDLIB | 89

dets

Itisnot guaranteed that callstof i r st/ 1, next / 2, or select and match functionswork as expected even if the table
is fixed; the limited support for concurrency provided by the et s(3) module is not yet provided by Dets. Fixing a
table currently only disables resizing of the hash list of the table.

If objects have been added while the table was fixed, the hash list starts to grow when the table is released, which
significantly slows down access to the table for a period of time.

select(Continuation) ->
{Selection, Continuation2} |
'$end of table' |
{error, Reason}
Types:
Continuation = Continuation2 = select cont()
Selection = [term()]
Reason = term()
Applies a match specification to some objects stored in atable and returns a non-empty list of the results. The table,

the match specification, and the number of objects that are matched are al defined by Cont i nuat i on, which is
returned by apreviouscall tosel ect/ 1 orsel ect/ 3.

When all objects of the table have been matched, ' $end_of _t abl e' isreturned.

select(Name, MatchSpec) -> Selection | {error, Reason}

Types:
Name = tab name()
MatchSpec = match spec()
Selection = [term()]

Reason = term()

Returns the results of applying match specification Mat chSpec to all or some objects stored in table Nane. The
order of the objects is not specified. For a description of match specifications, see the ERTS User's Guide.

If the keyposth element of Mat chSpec is unbound, the match specification is applied to all objects of the table. If
the keyposth element is bound, the match specification is applied to the objects with the correct key(s) only.

Usingthesel ect functionsfor traversing all objects of atableis more efficient than callingf i r st/ 1 andnext/ 2
orslot/2.

select(Name, MatchSpec, N) ->
{Selection, Continuation} |
'$end of table' |
{error, Reason}
Types:
Name = tab name()
MatchSpec = match spec()
N = default | integer() >= 0
Continuation = select cont()
Selection = [term()]
Reason = term()

Returns the results of applying match specification Mat chSpec to some or al objects stored in table Nane. The
order of the objects is not specified. For a description of match specifications, see the ERTS User's Guide.

90 | Ericsson AB. All Rights Reserved.: STDLIB

dets

A tuple of the results of applying the match specification and a continuation is returned, unless the table is empty, in
which case' $end_of _t abl e' isreturned. The continuation is to be used when matching more objects by calling
sel ect/ 1.

If the keyposth element of Mat chSpec isbound, the match specification is applied to al objects of the table with the
correct key(s). If the keyposth element of Mat chSpec isunbound, the match specification is applied to all objects of
thetable, N objects at atime, until at least one object matches or the end of the table is reached. The default, indicated
by giving Nthevaluedef aul t , isto let the number of objects vary depending on the sizes of the objects. All objects
with the same key are always handled at the same time, which implies that the match specification can be applied
to more than N objects.

Thetableisalwaysto be protected usingsaf e_f i xt abl e/ 2 beforecallingsel ect / 3, otherwise errors can occur
when calling sel ect/ 1.

select delete(Name, MatchSpec) -> N | {error, Reason}
Types.

Name = tab name()

MatchSpec = match spec()

N = integer() >= 0

Reason = term()
Deletes each object from table Nane such that applying match specification Mat chSpec to the object returns value
t r ue. For adescription of match specifications, see the ERTS User's Guide. Returns the number of deleted objects.
If the keyposth element of Mat chSpec is bound, the match specification is applied to the objects with the correct
key(s) only.

slot(Name, I) -> '$end of table' | Objects | {error, Reason}
Types:

Name = tab name()

I = integer() >= 0

Objects = [object()]

Reason = term()

The objects of atable are distributed among sl ots, starting with slot 0 and ending with slot n. Returnsthe list of objects
associated with slot | . If | >n, ' $end_of _t abl e' isreturned.

sync(Name) -> ok | {error, Reason}
Types.

Name = tab name()

Reason = term()

Ensures that all updates made to table Nare are written to disk. This also appliesto tables that have been opened with
flagram fil e settotr ue. Inthiscase, the contents of the RAM file are flushed to disk.

Notice that the space management data structures kept in RAM, the buddy system, is also written to the disk. This
can take some time if the table is fragmented.

table(Name) -> QueryHandle

table(Name, Options) -> QueryHandle
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 91

dets

Name = tab name()
Options = Option | [Option]
Option = {n objects, Limit} | {traverse, TraverseMethod}
Limit = default | integer() >=1
TraverseMethod = first next | select | {select, match spec()}
QueryHandle = glc:query handle()
Returns a Query List Comprehension (QLC) query handle. The gl ¢(3) module provides a query language aimed

mainly for Mnesia, but ETS tables, Dets tables, and lists are also recognized by ql ¢ as sources of data. Calling
det s: tabl e/ 1, 2 isthe means to make Dets table Nare usableto gl c.

When there are only simple restrictions on the key position, gl ¢ usesdet s: | ookup/ 2 to look up the keys. When
that is not possible, the whole table istraversed. Optiont r aver se determines how thisis done:

« first_next - Thetableistraversed onekey at atimeby callingdet s: first/1anddets: next/ 2.

 select - Thetableis traversed by caling det s: sel ect/ 3 and det s: sel ect/ 1. Option n_obj ect s
determines the number of objects returned (the third argument of sel ect / 3). The match specification (the
second argument of sel ect / 3) isassembled by gl c:

« Simplefiltersare trandated into egquivalent match specifications.

« More complicated filters must be applied to al objects returned by sel ect / 3 given a match specification
that matches all objects.

« {select, match_spec()} - As for sel ect, the table is traversed by calling det s: sel ect/ 3 and
det s: sel ect/ 1. The difference is that the match specification is specified explicitly. This is how to state
match specifications that cannot easily be expressed within the syntax provided by gl c.

The following example uses an explicit match specification to traverse the table:

1> dets:open file(t, []),

ok dets:insert(t, [{1,a},{2,b},{3,c},{4,d}]),

MS ets:fun2ms(fun({X,Y}) when (X > 1) or (X <5) -> {Y} end),
QH1 = dets:table(t, [{traverse, {select, MS}}]).

An example with implicit match specification:

2> QH2 = qlc:q([{Y} || {X,Y} <- dets:table(t), (X > 1) or (X <5)]).

The latter example is equivalent to the former, which can be verified using function gl c: i nf o/ 1:

3> glc:info(QH1) =:= qlc:info(QH2).
true

gl c: i nfo/ 1 returns information about a query handle. In this case identical information is returned for the two
query handles.

to ets(Name, EtsTab) -> EtsTab | {error, Reason}
Types:

Name = tab name()

EtsTab = ets:tab()

Reason = term()

Inserts the objects of the Dets table Narre into the ETS table Et sTab. The order in which the objects areinserted is
not specified. The existing objects of the ETS table are kept unless overwritten.

92 | Ericsson AB. All Rights Reserved.: STDLIB

dets

traverse(Name, Fun) -> Return | {error, Reason}
Types.
Name = tab name()
Fun = fun((Object) -> FunReturn)
Object = object()
FunReturn =
continue | {continue, Val} | {done, Value} | OtherValue

Return = [term()] | OtherValue
Val = Value = OtherValue = Reason = term()

Applies Fun to each object stored in table Nane in some unspecified order. Different actions are taken depending on
the return value of Fun. The following Fun return values are allowed:

conti nue

Continueto perform thetraversal. For example, the following function can be used to print the contents of atable:

fun(X) -> io:format("~p~n", [X]), continue end.

{continue, Val}
Continue the traversal and accumulate Val . The following function is supplied to collect all objects of atable

inalist:
fun(X) -> {continue, X} end.
{done, Val ue}

Terminate the traversal and return [Val ue | Acc].
Any other value &t her Val ue returned by Fun terminates the traversal and is returned immediately.

update counter(Name, Key, Increment) -> Result

Types.
Name = tab name()
Key = term()
Increment = {Pos, Incr} | Incr

Pos = Incr = Result = integer()

Updates the object with key Key stored in table Name of type set by adding | ncr to the element at the Pos:th
position. The new counter value is returned. If no position is specified, the element directly following the key is
updated.

This functions provides a way of updating a counter, without having to look up an object, update the object by
incrementing an element, and insert the resulting object into the table again.

See Also
ets(3),mesia(3),qlc(3)

Ericsson AB. All Rights Reserved.: STDLIB | 93

dict

dict

Erlang module

Thismodule provides aKey-Val ue dictionary. The representation of adictionary is not defined.

This module provides the same interface as the or ddi ct (3) module. One difference is that while this module
considers two keys as different if they do not match (=: =), or ddi ct considers two keys as different if and only if
they do not compare equal (==).

Data Types

dict(Key, Value)

Dictionary as returned by new/ 0.
dict() = dict(term(), term())

Exports

append(Key, Value, Dictl) -> Dict2
Types:
Dictl = Dict2 = dict(Key, Value)
Appends anew Val ue to the current list of values associated with Key .
See also section Notes.

append list(Key, VallList, Dictl) -> Dict2
Types.
Dictl = Dict2 = dict(Key, Value)
ValList = [Value]

Appendsalist of values Val Li st to the current list of values associated with Key. An exception is generated if the
initial value associated with Key isnot alist of values.

See also section Notes.

erase(Key, Dictl) -> Dict2
Types.
Dictl = Dict2 = dict(Key, Value)

Erases all items with a given key from adictionary.

fetch(Key, Dict) -> Value
Types:
Dict = dict(Key, Value)

Returns the value associated with Key in dictionary Di ct . This function assumes that Key is present in dictionary
Di ct, and an exception is generated if Key isnot in the dictionary.

See also section Notes.

94 | Ericsson AB. All Rights Reserved.: STDLIB

dict

fetch keys(Dict) -> Keys

Types.
Dict = dict(Key, Value :: term())
Keys = [Key]

Returnsalist of all keysin dictionary Di ct .

take(Key, Dict) -> {Value, Dictl} | error
Types:

Dict = Dictl = dict(Key, Value)

Key = Value = term()

This function returns value from dictionary and a new dictionary without this value. Returnser r or if thekey is not
present in the dictionary.

filter(Pred, Dictl) -> Dict2

Types.
Pred = fun((Key, Value) -> boolean())
Dictl = Dict2 = dict(Key, Value)

Di ct 2 isadictionary of al keysand valuesin Di ct 1 for which Pr ed(Key, Val ue) istrue.

find(Key, Dict) -> {ok, Value} | error
Types:
Dict = dict(Key, Value)
Searches for akey indictionary Di ct . Returns{ ok, Val ue}, where Val ue isthe value associated with Key, or
error if thekey isnot present in the dictionary.

See adso section Notes.

fold(Fun, AccO, Dict) -> Accl
Types.
Fun = fun((Key, Value, AccIn) -> AccOut)
Dict = dict(Key, Value)
AccO = Accl = AccIn = AccOut = Acc
Calls Fun on successive keys and values of dictionary Di ct together with an extra argument Acc (short for

accumulator). Fun must return a new accumulator that is passed to the next call. AccO is returned if the dictionary
is empty. The evaluation order is undefined.

from list(List) -> Dict
Types:
Dict dict(Key, Value)
List = [{Key, Value}]
Convertsthe Key-Val ue list Li st todictionary Di ct .

is empty(Dict) -> boolean()
Types.

Ericsson AB. All Rights Reserved.: STDLIB | 95

dict

Dict = dict()

Returnst r ue if dictionary Di ct has no elements, otherwisef al se.

is key(Key, Dict) -> boolean()
Types:

Dict = dict(Key, Value :: term())
Testsif Key iscontained in dictionary Di ct .

map (Fun, Dictl) -> Dict2

Types:
Fun = fun((Key, Valuel) -> Value2)
Dictl = dict(Key, Valuel)
Dict2 = dict(Key, Value2)

Calls Fun on successive keys and values of dictionary Di ct 1 to return a new value for each key. The evauation
order is undefined.

merge(Fun, Dictl, Dict2) -> Dict3
Types:
Fun = fun((Key, Valuel, Value2) -> Value)
Dictl = dict(Key, Valuel)
Dict2 = dict(Key, Value2)
Dict3 dict(Key, Value)
Merges two dictionaries, Di ct 1 and Di ct 2, to create a new dictionary. All the Key-Val ue pairs from both

dictionaries are included in the new dictionary. If a key occurs in both dictionaries, Fun is called with the key and
both values to return a new value. mer ge can be defined as follows, but is faster:

merge(Fun, D1, D2) ->
fold(fun (K, V1, D) ->
update(K, fun (V2) -> Fun(K, V1, V2) end, V1, D)
end, D2, D1).

new() -> dict()
Creates anew dictionary.

size(Dict) -> integer() >= 0
Types:
Dict = dict()
Returns the number of elementsin dictionary Di ct .

store(Key, Value, Dictl) -> Dict2
Types:
Dictl = Dict2 = dict(Key, Value)

Stores aKey-Val ue pair indictionary Di ct 2. If Key aready existsin Di ct 1, the associated value is replaced by
Val ue.

96 | Ericsson AB. All Rights Reserved.: STDLIB

dict

to list(Dict) -> List

Types.
Dict = dict(Key, Value)
List = [{Key, Value}]

Convertsdictionary Di ct to alist representation.

update(Key, Fun, Dictl) -> Dict2
Types:
Dictl = Dict2 = dict(Key, Value)
Fun = fun((Valuel :: Value) -> Value2 :: Value)

Updates avaue in adictionary by calling Fun on the value to get a new value. An exception is generated if Key is
not present in the dictionary.

update(Key, Fun, Initial, Dictl) -> Dict2

Types:
Dictl = Dict2 = dict(Key, Value)
Fun = fun((Valuel :: Value) -> Value2 :: Value)
Initial = Value

Updates avauein adictionary by calling Fun on the value to get anew value. If Key isnot present in the dictionary,
Initial isstored asthefirst value. For example, append/ 3 can be defined as:

append(Key, Val, D) ->
update(Key, fun (0ld) -> Old ++ [Val] end, [Val], D).

update counter(Key, Increment, Dictl) -> Dict2
Types.

Dictl = Dict2 = dict(Key, Value)

Increment = number()

Adds | ncr enrent to the value associated with Key and stores this value. If Key is not present in the dictionary,
| ncr enent isstored asthefirst value.

This can be defined as follows, but is faster:

update counter(Key, Incr, D) ->
update(Key, fun (0ld) -> 0ld + Incr end, Incr, D).
Notes

Functions append and append_| i st are included so that keyed values can be stored in alist accumulator, for
example:

> DO = dict:new(),
D1 = dict:store(files, [], DO),
D2 = dict:append(files, f1l, D1),
D3 = dict:append(files, f2, D2),
D4 = dict:append(files, f3, D3),

dict:fetch(files, D4).
[f1,f2,f3]

Ericsson AB. All Rights Reserved.: STDLIB | 97

dict

This saves the trouble of first fetching a keyed value, appending a new value to the list of stored values, and storing
the result.

Function f et ch isto be used if the key is known to be in the dictionary, otherwise function f i nd.

See Also
gb_trees(3),orddict(3)

98 | Ericsson AB. All Rights Reserved.: STDLIB

digraph

digraph

Erlang module

This module provides aversion of labeled directed graphs ("digraphs”).

The digraphs managed by this module are stored in ETS tables. That implies the following:

Only the process that created the digraph is alowed to update it.

Digraphswill not be garbage collected. The ETS tables used for adigraph will only be deleted whendel et e/ 1
is called or the process that created the digraph terminates.

A digraph is amutable data structure.

What makes the graphs provided here non-proper directed graphs isthat multiple edges between vertices are allowed.
However, the customary definition of directed graphsis used here.

A directed graph (or just "digraph") isapair (V, E) of afinite set V of vertices and a finite set E of directed
edges (or just "edges'). The set of edges E isasubset of V x V (the Cartesian product of V with itself).

In this module, V is alowed to be empty. The so obtained unique digraph is called the empty digraph. Both
vertices and edges are represented by unique Erlang terms.

Digraphs can be annotated with more information. Such information can be attached to the vertices and to the
edges of the digraph. An annotated digraph is called alabeled digraph, and the information attached to a vertex
or an edgeiscaled alabel. Labels are Erlang terms.

An edge e = (v, w) issaid to emanate from vertex v and to be incident on vertex w.
The out-degree of avertex isthe number of edges emanating from that vertex.
Thein-degree of avertex isthe number of edges incident on that vertex.

If an edge is emanating from v and incident on w, then w is said to be an out-neighbor of v, and v is said to
be an in-neighbor of w.

A path P from v[1] to v[K] in adigraph (V, E) isanon-empty sequence v[1], v[2], ..., V[K] of verticesin V such
that thereisan edge (v[i],v[i+1]) inEfor 1<=i<k.

Thelength of path Pisk-1.

Path Pissimpleif all vertices are distinct, except that the first and the last vertices can be the same.

Path Pisacycleif the length of P isnot zero and v[1] = v[K].

A loop isacycle of length one.

A simple cycleisapath that is both a cycle and simple.

An acyclic digraph is adigraph without cycles.

Data Types

d type() = d cyclicity() | d _protection()
d_cyclicity() = acyclic | cyclic

d protection() = private | protected
graph()

A digraph asreturned by new 0O, 1.

Ericsson AB. All Rights Reserved.: STDLIB | 99

digraph

edge()
label() = term()
vertex()

Exports

add edge(G, V1, V2) -> edge() | {error, add edge err rsn()}
add edge(G, V1, V2, Label) -> edge() | {error, add edge err rsn()}
add edge(G, E, V1, V2, Label) ->

edge() | {error, add edge err _rsn()}

Types.
G = graph()
E = edge()

V1 = V2 = vertex()
Label = label()

add _edge err_rsn() =
{bad edge, Path :: [vertex()]} | {bad vertex, V :: vertex()}

add_edge/ 5 creates (or modifies) edge E of digraph G using Label asthe (new) label of the edge. The edge is
emanating from V1 and incident on V2. Returns E.

add_edge(G V1, V2, Label) isequivalenttoadd edge(G E, V1, V2, Label),whereEisa
created edge. The created edgeisrepresented by teem [$e' | N, where Nisan integer >=0.
add_edge(G V1, V2) isequivdenttoadd edge(G V1, V2, []).

If the edge would create acyclein an acyclic digraph, { error, {bad_edge, Pat h}} isreturned. If Galready
has an edge with value E connecting adifferent pair of vertices,{ error, {bad_edge, [V1, V2]}} isreturned.
If either of V1 or V2 isnot avertex of digraph G, { error, {bad_vertex, V}} isreturned,V =V1orV =V2.

add vertex(G) -> vertex()
add vertex(G, V) -> vertex()
add vertex(G, V, Label) -> vertex()
Types:
G = graph()
V = vertex()
Label = label()

add_vert ex/ 3 creates(or modifies) vertex V of digraph G using Label asthe (new) label of thevertex. ReturnsV.
add_vertex(G V) isequivdenttoadd _vertex(G V, []).

add_vert ex/ 1 creates a vertex using the empty list as label, and returns the created vertex. The created vertex is
represented by term [' $v' | N], where Nisan integer >= 0.

del edge(G, E) -> true

Types:
G = graph()
E = edge()
Deletes edge E from digraph G,

100 | Ericsson AB. All Rights Reserved.: STDLIB

digraph

del edges(G, Edges) -> true
Types:

G = graph()

Edges = [edge()]
Deletesthe edgesin list Edges from digraph G

del path(G, V1, V2) -> true
Types:
G = graph()
V1 = V2 = vertex()
Deletes edges from digraph G until there are no paths from vertex V1 to vertex V2.
A sketch of the procedure employed:
e Find an arbitrary simple path v[1], v[2], ..., V[K] fromV1 to V2 in G
» Remove al edges of Gemanating from v[i] and incident to v[i+1] for 1 <=i <k (including multiple edges).
e Repeat until thereis no path between V1 and V2.

del vertex(G, V) -> true

Types.
G = graph()
V = vertex()

Deletes vertex V from digraph G. Any edges emanating from V or incident on V are a so deleted.

del vertices(G, Vertices) -> true
Types:

G = graph()

Vertices = [vertex()]
Deletesthe verticesinlist Ver t i ces from digraph G

delete(G) -> true
Types:
G = graph()

Deletes digraph G. This call is important as digraphs are implemented with ETS. There is no garbage collection of
ETStables. However, the digraph is deleted if the process that created the digraph terminates.

edge(G, E) -> {E, V1, V2, Label} | false

Types:
G = graph()
E = edge()

V1 = V2 = vertex()
Label = label()

Returns{E, V1, V2, Label}, whereLabel isthelabel of edge E emanating from V1 and incident on V2 of
digraph G. If no edge E of digraph Gexists, f al se isreturned.

Ericsson AB. All Rights Reserved.: STDLIB | 101

digraph

edges(G) -> Edges
Types:
G = graph()
Edges = [edge()]
Returns alist of al edges of digraph G, in some unspecified order.

edges (G, V) -> Edges

Types:
G = graph()
V = vertex()

Edges = [edge()]
Returnsalist of all edges emanating from or incident on V of digraph G, in some unspecified order.

get cycle(G, V) -> Vertices | false

Types:
G = graph()
V = vertex()
Vertices = [vertex(), ...]
If a simple cycle of length two or more exists through vertex V, the cycleisreturned asalist [V, ..., V] of

vertices. If aloop through V exists, theloop isreturned asalist [V] . If no cyclesthrough V exist, f al se isreturned.
get _pat h/ 3 isused for finding a simple cycle through V.

get path(G, V1, V2) -> Vertices | false

Types:
G = graph()
V1 = V2 = vertex()
Vertices = [vertex(), ...]
Triesto find asimple path from vertex V1 to vertex V2 of digraph G. Returnsthe pathasalist[V1, ..., V2] of

vertices, or f al se if no simple path from V1 to V2 of length one or more exists.
Digraph Gistraversed in adepth-first manner, and the first found path is returned.

get short cycle(G, V) -> Vertices | false

Types:

G = graph()

V = vertex()

Vertices = [vertex(), ...]
Tries to find an as short as possible simple cycle through vertex V of digraph G Returns the cycle as a list
[V, ..., V] of vertices, or f al se if no simple cycle through V exists. Notice that a loop through V is returned
aslist[V, V].

get _short _pat h/ 3 isused for finding asimple cycle through V.

get short path(G, V1, V2) -> Vertices | false
Types:

102 | Ericsson AB. All Rights Reserved.: STDLIB

digraph

G = graph()
V1 = V2 = vertex()
Vertices = [vertex(), ...]

Triesto find an as short as possible simple path from vertex V1 to vertex V2 of digraph G Returns the path as a list
[Vi, ..., V2] of vertices, or f al se if no simple path from V1 to V2 of length one or more exists.

Digraph Gistraversed in a breadth-first manner, and the first found path is returned.

in _degree(G, V) -> integer() >= 0

Types:
G = graph()
V = vertex()

Returns the in-degree of vertex V of digraph G

in edges(G, V) -> Edges
Types.
G = graph()
V = vertex()
Edges = [edge()]
Returns alist of all edgesincident on V of digraph G, in some unspecified order.

in neighbours(G, V) -> Vertex

Types.
G = graph()
V = vertex()

Vertex = [vertex()]
Returnsalist of all in-neighbors of V of digraph G, in some unspecified order.

info(G) -> Infolist

Types.
G = graph()
InfolList =
[{cyclicity, Cyclicity :: d cyclicity()} |
{memory, NoWords :: integer() >= 0} |
{protection, Protection :: d protection()}]

d cyclicity() = acyclic | cyclic
d protection() = private | protected

Returnsalist of { Tag, Val ue} pairsdescribing digraph G. The following pairs are returned:

e {cyclicity, Cyclicity},whereCyclicityiscyclicoracycli c,accordingto the optionsgiven
tonew.

e {nenory, NoWrds}, where NoWr ds isthe number of words allocated to the ETS tables.

« {protection, Protection},whereProtectionisprotectedorprivat e,accordingtotheoptions
givento new.

Ericsson AB. All Rights Reserved.: STDLIB | 103

digraph

new() -> graph()
Equivalenttonew([]) .

new(Type) -> graph()
Types:
Type = [d_type()]
d type() = d cyclicity() | d _protection()
d_cyclicity() = acyclic | cyclic
d protection() = private | protected
Returns an empty digraph with properties according to the optionsin Ty pe:
cyclic
Allows cyclesin the digraph (default).
acyclic
The digraph isto be kept acyclic.
protected
Other processes can read the digraph (default).
private
The digraph can be read and modified by the creating process only.
If an unrecognized type option T is specified or Type isnot aproper list, abadar g exception is raised.

no edges(G) -> integer() >= 0
Types:

G = graph()
Returns the number of edges of digraph G

no vertices(G) -> integer() >= 0
Types:

G = graph()
Returns the number of vertices of digraph G

out degree(G, V) -> integer() >= 0

Types:
G = graph()
V = vertex()

Returns the out-degree of vertex V of digraph G

out edges(G, V) -> Edges
Types.

104 | Ericsson AB. All Rights Reserved.: STDLIB

digraph

G = graph()
V = vertex()
Edges = [edge()]
Returns alist of all edges emanating from V of digraph G, in some unspecified order.

out neighbours(G, V) -> Vertices

Types.
G = graph()
V = vertex()

Vertices = [vertex()]
Returns alist of all out-neighbors of V of digraph G, in some unspecified order.

vertex(G, V) -> {V, Label} | false

Types.
G = graph()
V = vertex()

Label = label()

Returns{V, Label }, whereLabel isthelabel of the vertex V of digraph G, or f al se if no vertex V of digraph
Gexists.

vertices(G) -> Vertices
Types:
G = graph()
Vertices = [vertex()]
Returns alist of all vertices of digraph G, in some unspecified order.

See Also
di graph_utils(3),ets(3)

Ericsson AB. All Rights Reserved.: STDLIB | 105

digraph_utils

digraph_utils

Erlang module

This module provides algorithms based on depth-first traversal of directed graphs. For basic functions on directed
graphs, seethedi gr aph(3) module.

A directed graph (or just "digraph™) isa pair (V, E) of afinite set V of vertices and afinite set E of directed
edges (or just "edges'). The set of edges E isasubset of V x V (the Cartesian product of V with itself).

Digraphs can be annotated with more information. Such information can be attached to the vertices and to the
edges of the digraph. An annotated digraph is called alabeled digraph, and the information attached to a vertex
or an edgeiscalled alabel.

An edge e = (v, w) issaid to emanate from vertex v and to be incident on vertex w.

If an edge is emanating from v and incident on w, then w is said to be an out-neighbor of v, and v is said to
be an in-neighbor of w.

A path P from v[1] to v[K] in adigraph (V, E) isanon-empty sequence v[1], v[2], ..., V[K] of verticesin V such
that thereisan edge (v[i],v[i+1]) inEfor 1<=i <k.

Thelength of path Pisk-1.

Path Pisacycleif the length of Pisnot zero and v[1] = v[K].

A loop isacycle of length one.

An acyclic digraph isadigraph without cycles.

A depth-first traversal of adirected digraph can be viewed as a process that visits all vertices of the digraph.
Initially, all verticesare marked asunvisited. Thetraversal startswith an arbitrarily chosen vertex, whichismarked
as visited, and follows an edge to an unmarked vertex, marking that vertex. The search then proceeds from that
vertex inthe samefashion, until thereisno edgeleading to an unvisited vertex. At that point the process backtracks,

and the traversal continues as long as there are unexamined edges. If unvisited vertices remain when all edges
from the first vertex have been examined, some so far unvisited vertex is chosen, and the process is repeated.

A partial ordering of aset Sisatransitive, antisymmetric, and reflexive relation between the objects of S.

The problem of topological sorting is to find a total ordering of Sthat is a superset of the partial ordering. A
digraph G = (V, E) is equivalent to arelation E on V (we neglect that the version of directed graphs provided
by the di gr aph module allows multiple edges between vertices). If the digraph has no cycles of length two or
more, the reflexive and transitive closure of E is apartia ordering.

A subgraph G' of G isadigraph whose vertices and edges form subsets of the vertices and edges of G.

G' is maximal with respect to a property P if all other subgraphs that include the vertices of G' do not have
property P.

A strongly connected component is amaximal subgraph such that there is a path between each pair of vertices.
A connected component isamaximal subgraph such that thereisapath between each pair of vertices, considering
all edges undirected.

An arborescenceis an acyclic digraph with avertex V, theroot, such that there is aunique path from V to every
other vertex of G.

A treeisan acyclic non-empty digraph such that thereis aunique path between every pair of vertices, considering
all edges undirected.

Exports

arborescence root(Digraph) -> no | {yes, Root}
Types:

106 | Ericsson AB. All Rights Reserved.: STDLIB

digraph_utils

Digraph = digraph:graph()
Root = digraph:vertex()
Returns{yes, Root} if Root istheroot of the arborescence Di gr aph, otherwise no.

components(Digraph) -> [Component]
Types:
Digraph = digraph:graph()
Component = [digraph:vertex()]

Returns alist of connected components. Each component is represented by its vertices. The order of the vertices and
the order of the components are arbitrary. Each vertex of digraph Di gr aph occursin exactly one component.

condensation(Digraph) -> CondensedDigraph
Types:
Digraph = CondensedDigraph = digraph:graph()
Creates a digraph where the vertices are the strongly connected components of Di gr aph as returned by
strong_conponent s/ 1.If X and Y are two different strongly connected components, and vertices x and y exist

in X and Y, respectively, such that there is an edge emanating from x and incident on y, then an edge emanating from
X andincidenton'Y iscreated.

The created digraph has the same type as Di gr aph. All vertices and edges have the default label [] .

Each cycleisincluded in some strongly connected component, which impliesthat atopological ordering of the created
digraph always exists.

cyclic strong components(Digraph) -> [StrongComponent]
Types:
Digraph = digraph:graph()
StrongComponent = [digraph:vertex()]
Returnsalist of strongly connected components. Each strongly component is represented by its vertices. The order of

the vertices and the order of the components are arbitrary. Only vertices that are included in some cyclein Di gr aph
arereturned, otherwise the returned list is equal to that returned by st r ong_conponent s/ 1.

is acyclic(Digraph) -> boolean()
Types:
Digraph = digraph:graph()
Returnst r ue if and only if digraph Di gr aph isacyclic.

is arborescence(Digraph) -> boolean()
Types:
Digraph = digraph:graph()
Returnst r ue if and only if digraph Di gr aph isan arborescence.

is tree(Digraph) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 107

digraph_utils

Digraph = digraph:graph()
Returnst r ue if and only if digraph Di gr aph isatree.

loop vertices(Digraph) -> Vertices
Types:
Digraph = digraph:graph()
Vertices = [digraph:vertex()]
Returnsalist of all verticesof Di gr aph that are included in some loop.

postorder(Digraph) -> Vertices
Types:
Digraph = digraph:graph()
Vertices = [digraph:vertex()]
Returnsall verticesof digraph Di gr aph. The order isgiven by adepth-first traversal of the digraph, collecting visited

verticesin postorder. More precisaly, theverticesvisited while searching from an arbitrarily chosen vertex are collected
in postorder, and al those collected vertices are placed before the subsequently visited vertices.

preorder(Digraph) -> Vertices
Types:
Digraph = digraph:graph()
Vertices = [digraph:vertex()]

Returnsall verticesof digraph Di gr aph. The order isgiven by adepth-first traversal of the digraph, collecting visited
verticesin preorder.

reachable(Vertices, Digraph) -> Reachable
Types:

Digraph = digraph:graph()

Vertices = Reachable = [digraph:vertex()]

Returns an unsorted list of digraph vertices such that for each vertex in the list, there is a path in Di gr aph from
some vertex of Ver t i ces to the vertex. In particular, as paths can have length zero, the verticesof Verti ces are
included in the returned list.

reachable neighbours(Vertices, Digraph) -> Reachable
Types.

Digraph = digraph:graph()

Vertices = Reachable = [digraph:vertex()]

Returns an unsorted list of digraph vertices such that for each vertex in thelist, thereisapathin Di gr aph of length
one or more from some vertex of Ver t i ces to the vertex. As a consequence, only those verticesof Ver t i ces that
are included in some cycle are returned.

reaching(Vertices, Digraph) -> Reaching
Types:

108 | Ericsson AB. All Rights Reserved.: STDLIB

digraph_utils

Digraph = digraph:graph()
Vertices = Reaching = [digraph:vertex()]

Returns an unsorted list of digraph vertices such that for each vertex in the list, there is a path from the vertex to
some vertex of Ver ti ces. In particular, as paths can have length zero, the vertices of Ver ti ces areincluded in
the returned list.

reaching neighbours(Vertices, Digraph) -> Reaching
Types.

Digraph = digraph:graph()

Vertices = Reaching = [digraph:vertex()]

Returns an unsorted list of digraph vertices such that for each vertex in the list, there is a path of length one or more
from the vertex to some vertex of Ver t i ces. Therefore only those verticesof Ver t i ces that areincluded in some
cycle are returned.

strong components(Digraph) -> [StrongComponent]
Types:
Digraph = digraph:graph()
StrongComponent = [digraph:vertex()]
Returns a list of strongly connected components. Each strongly component is represented by its vertices. The order

of the vertices and the order of the components are arbitrary. Each vertex of digraph Di gr aph occursin exactly one
strong component.

subgraph(Digraph, Vertices) -> SubGraph
subgraph(Digraph, Vertices, Options) -> SubGraph
Types:
Digraph = SubGraph = digraph:graph()
Vertices = [digraph:vertex()]
Options = [{type, SubgraphType} | {keep labels, boolean()}]
SubgraphType = inherit | [digraph:d_type()]
Creates a maximal subgraph of Di gr aph having as vertices those vertices of Di gr aph that are mentioned in
Verti ces.

If thevalue of optiont ype isi nheri t , whichisthe default, the type of Di gr aph isused for the subgraph as well.
Otherwise the option value of t ype isused asargument to di gr aph: new/ 1.

If thevalue of optionkeep_I| abel s ist r ue, which isthe default, the labels of vertices and edges of Di gr aph are
used for the subgraph aswell. If thevalueisf al se, defaultlabel [] isused for the vertices and edges of the subgroup.

subgraph(Di graph, Vertices) isequivaenttosubgraph(Di graph, Vertices, []).
If any of the arguments areinvalid, abadar g exception israised.

topsort(Digraph) -> Vertices | false
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 109

digraph_utils

Digraph = digraph:graph()
Vertices = [digraph:vertex()]

Returns atopological ordering of the vertices of digraph Di gr aph if such an ordering exists, otherwisef al se. For
each vertex in the returned list, no out-neighbors occur earlier in the list.

See Also
di graph(3)

110 | Ericsson AB. All Rights Reserved.: STDLIB

€pp

€pp

Erlang module

The Erlang code preprocessor includes functions that are used by the conpi | e module to preprocess macros and
include files before the parsing takes place.

The Erlang source file encoding is selected by acomment in one of thefirst two lines of the sourcefile. Thefirst string
matching the regular expression codi ng\ s*[: =]\ s* ([- a- zA- Z0- 9]) + selects the encoding. If the matching
string is not a valid encoding, it is ignored. The valid encodings are Lat i n- 1 and UTF- 8, where the case of the
characters can be chosen freely.

Examples:

%% For this file we have chosen encoding = Latin-1

%% -*- coding: latin-1 -*-

Data Types

macros() =
[atom() | {atom(), term()} | {atom(), term(), redefine}]

epp_handle() = pid()
Handle to the epp server.

source encoding() = latinl | utf8
warning info() = {erl anno:location(), module(), term()}

Exports

close(Epp) -> ok
Types:

Epp = epp_handle()
Closes the preprocessing of afile.

default encoding() -> source encoding()
Returns the default encoding of Erlang source files.

encoding to string(Encoding) -> string()
Types:
Encoding = source encoding()

Returns a string representation of an encoding. The string is recognized by read_encodi ng/ 1, 2,
read_encodi ng_frombinary/1, 2,andset _encodi ng/ 1, 2 asavalid encoding.

Ericsson AB. All Rights Reserved.: STDLIB | 111

€pp

format error(ErrorDescriptor) -> io lib:chars()
Types.
ErrorDescriptor = term()

TakesanEr r or Descri pt or and returnsastring that describesthe error or warning. Thisfunction isusually called
implicitly when processing an Er r or | nf o structure (see section Error Information).

open(Options) ->
{ok, Epp} | {ok, Epp, Extra} | {error, ErrorDescriptor}

Types.
Options =

[{default encoding, DefEncoding :: source encoding()} |
{includes, IncludePath :: [DirectoryName :: file:name()]} |
{source name, SourceName :: file:name()} |
{macros, PredefMacros :: macros()} |
{name, FileName :: file:name()} |
{location, StartLocation :: erl anno:location()} |
{fd, FileDescriptor :: file:io device()} |
extral

Epp = epp_handle()
Extra = [{encoding, source encoding() | none}]
ErrorDescriptor = term()

Opens afile for preprocessing.

If you want to change the file name of the implicit -file() attributes inserted during preprocessing, you can do with
{sour ce_nane, Sour ceNane}.If unsetit will default to the name of the opened file.

If ext raisspecifiedin Opt i ons, thereturnvalueis{ ok, Epp, Extra} instead of { ok, Epp}.
Theoption| ocat i on isforwarded to the Erlang token scanner, seeer | _scan: t okens/ 3, 4.

open(FileName, IncludePath) ->
{ok, Epp} | {error, ErrorDescriptor}

Types.
FileName = file:name()
IncludePath = [DirectoryName :: file:name()]

Epp = epp_handle()
ErrorDescriptor = term()

Equivalent to epp: open([{name, Fil eNane}, {includes, |ncludePath}]).
open(FileName, IncludePath, PredefMacros) ->

{ok, Epp} | {error, ErrorDescriptor}
Types:

112 | Ericsson AB. All Rights Reserved.: STDLIB

€pp

FileName = file:name()

IncludePath = [DirectoryName :: file:name()]
PredefMacros = macros()

Epp = epp handle()

ErrorDescriptor = term()

Equivalent to epp: open([{nane, Fi | eNane}, {i ncl udes, I ncl udePat h}, { macr os,
Pr edef Macr os}]).

parse erl form(Epp) ->
{ok, AbsForm} |
{error, ErrorInfo} |
{warning, WarningInfo} |
{eof, Location}
Types:
Epp = epp_handle()
AbsForm = erl parse:abstract form()
Location = erl _anno:location()
ErrorInfo = erl _scan:error_info() | erl _parse:error_info()

WarningInfo = warning info()

Returns the next Erlang form from the opened Erlang sourcefile. Tuple{ eof , Locat i on} isreturned at the end

of thefile. The first form corresponds to an implicit attribute-fi |l e(Fi | e, 1) . , where Fi | e isthefile name.

parse file(FileName, Options) ->
{ok, [Form]} |
{ok, [Form], Extra} |
{error, OpenError}

Types:

FileName = file:name()

Options =
[{includes, IncludePath :: [DirectoryName :: file:name()]1} |
{source name, SourceName :: file:name()} |
{macros, PredefMacros :: macros()} |
{default_encoding, DefEncoding :: source_encoding()} |
{location, StartLocation :: erl anno:location()} |
extral

Form =

erl parse:abstract form() |
{error, ErrorInfo} |
{eof, Location}

Location = erl _anno:location()

ErrorInfo = erl scan:error _info() | erl parse:error _info()
Extra = [{encoding, source encoding() | none}]

OpenError = file:posix() | badarg | system limit

Preprocesses and parses an Erlang source file. Notice that tuple { eof , Locat i on} returned at the end of the file

isincluded asa"form".

Ericsson AB. All Rights Reserved.: STDLIB | 113

€pp

If you want to change the file name of the implicit -file() attributes inserted during preprocessing, you can do with
{source_nane, SourceNane}.If unsetitwill default to the name of the opened file.

If ext raisspecifiedin Opt i ons, thereturnvalueis{ ok, [Form , Extra} insteadof {ok, [Fornj}.
Theoption| ocat i on isforwarded to the Erlang token scanner, seeer | _scan: t okens/ 3, 4.

parse file(FileName, IncludePath, PredefMacros) ->
{ok, [Form]} | {error, OpenError}

Types.
FileName = file:name()
IncludePath = [DirectoryName :: file:name()]
Form =

erl parse:abstract form() |
{error, ErrorInfo} |
{eof, Location}

PredefMacros = macros()

Location = erl _anno:location()

ErrorInfo = erl scan:error _info() | erl parse:error_info()
OpenError = file:posix() | badarg | system limit

Equivalent to epp: parse_fil e(Fil eNane, [{incl udes, I ncl udePat h}, { macr os,
Pr edef Macros}]).

read_encoding(FileName) -> source _encoding() | none
read encoding(FileName, Options) -> source encoding() | none
Types:
FileName = file:name()
Options = [Option]
Option = {in_comment only, boolean()}
Read the encoding from afile. Returns the read encoding, or none if no valid encoding is found.

Option i n_conment _onl y istrue by default, which is correct for Erlang source files. If set to f al se, the
encoding string does not necessarily have to occur in a comment.

read encoding from binary(Binary) -> source encoding() | none
read encoding from binary(Binary, Options) ->
source_encoding() | none

Types:

Binary = binary()

Options = [Option]

Option = {in comment only, boolean()}
Read the encoding from a binary. Returns the read encoding, or none if no valid encoding is found.

Option i n_conment _onl y ist rue by default, which is correct for Erlang source files. If set to f al se, the
encoding string does not necessarily have to occur in a comment.

scan_erl form(Epp) ->
{ok, Tokens} |

114 | Ericsson AB. All Rights Reserved.: STDLIB

€pp

{error, ErrorInfo} |
{warning, WarningInfo} |
{eof, Line}
Types.
Epp = epp_handle()
Tokens = erl scan:tokens()
Line = erl_anno:line()
ErrorInfo = erl scan:error_info() | erl parse:error_info()
WarningInfo = warning info()
Returnsthe raw tokens of the next Erlang form from the opened Erlang sourcefile. A tuple{ eof , Li ne} isreturned
at the end of the file. The first form corresponds to an implicit attribute- fi | e(Fi |l e, 1) ., whereFi | e isthefile
name.

scan_file(FileName, Options) ->
{ok, [Form], Extra} | {error, OpenError}

Types:
FileName = file:name()
Options =
[{includes, IncludePath :: [DirectoryName :: file:name()]1} |
{source name, SourceName :: file:name()} |
{macros, PredefMacros :: macros()} |
{default _encoding, DefEncoding :: source encoding()}]

Form = erl scan:tokens() | {error, ErrorInfo} | {eof, Loc}
Loc = erl _anno:location()
ErrorInfo = erl scan:error_info()
Extra = [{encoding, source encoding() | none}]
OpenError = file:posix() | badarg | system limit
Preprocesses an Erlang source file returning alist of the lists of raw tokens of each form. Notice that the tuple { eof ,

Li ne} returned at the end of thefileisincluded asa"form", and any failures to scan aform are included in the list
astuples{error, Errorlnfo}.

set _encoding(File) -> source encoding() | none
Types:
File = io:device()

Reads the encoding from an 1/0 device and sets the encoding of the device accordingly. The position of the 1/O device
referenced by Fi | e is not affected. If no valid encoding can be read from the I/O device, the encoding of the I/O
deviceis set to the default encoding.

Returns the read encoding, or none if no valid encoding is found.

set encoding(File, Default) -> source encoding() | none
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 115

€pp

Default = source encoding()
File = io:device()

Reads the encoding from an 1/0 device and sets the encoding of the device accordingly. The position of the 1/O device
referenced by Fi | e is not affected. If no valid encoding can be read from the I/O device, the encoding of the I/O
deviceis set to the encoding specified by Def aul t .

Returns the read encoding, or none if no valid encoding is found.

Error Information

Er r or I nf o isthe standard Er r or | nf o structure that is returned from all I/O modules. The format is as follows:
{ErrorLine, Module, ErrorDescriptor}
A string describing the error is obtained with the following call:

Module:format error(ErrorDescriptor)

See Also

erl _parse(3)

116 | Ericsson AB. All Rights Reserved.: STDLIB

erl_anno

erl_anno

Erlang module

This module provides an abstract type that is used by the Erlang Compiler and its helper modules for holding data
such as column, line number, and text. The datatype is a collection of annotations as described in the following.

The Erlang Token Scanner returns tokens with a subset of the following annotations, depending on the options:
col um
The column where the token begins.
| ocation
The line and column where the token begins, or just the line if the column is unknown.
t ext
The token's text.
From this, the following annotation is derived:
line
The line where the token begins.
This module a so supports the following annotations, which are used by various modules:

file
A filename.
gener at ed

A Boolean indicating if the abstract code is compiler-generated. The Erlang Compiler does not emit warnings
for such code.

record

A Boolean indicating if the origin of the abstract code is a record. Used by Diayzer to assign types to tuple
elements.

The functionscol um(),end_| ocation(),line(),l ocation(),andtext() intheerl _scan module
can be used for inspecting annotations in tokens.

Thefunctionsanno_fromterm(),anno_to_term(),fol d_anno(),map_anno(),mapfol d_anno(),
and new_anno(),intheer| _par se module can be used for manipulating annotations in abstract code.

Data Types
anno()
A collection of annotations.

anno_term() = term()

The term representing a collection of annotations. It iseither al ocat i on() or alist of key-value pairs.

Ericsson AB. All Rights Reserved.: STDLIB | 117

erl_anno

column() = integer() >=1

line() = integer() >= 0

location() = line() | {line(), column()}
text() = string()

Exports

column(Anno) -> column() | undefined
Types:

Anno = anno()

column() = integer() >=1
Returns the column of the annotations Anno.

end location(Anno) -> location() | undefined
Types.

Anno = anno()

location() = line() | {line(), column()}

Returns the end location of the text of the annotations Anno. If thereis no text, undef i ned isreturned.

file(Anno) -> filename() | undefined
Types:

Anno = anno()

filename() = file:filename all()

Returns the filename of the annotations Anno. If thereis no filename, undef i ned isreturned.

from term(Term) -> Anno

Types:
Term = anno_term()
Anno = anno()

Returns annotations with representation Term.
See alsoto_term().

generated(Anno) -> generated()
Types:

Anno = anno()

generated() = boolean()

Returnst r ue if annotations Anno is marked as generated. The default istoreturn f al se.

is anno(Term) -> boolean()
Types:
Term = any()
Returnst r ue if Termisacollection of annotations, otherwisef al se.

118 | Ericsson AB. All Rights Reserved.: STDLIB

erl_anno

line(Anno) -> line()
Types.

Anno = anno()

line() = integer() >= 0
Returns the line of the annotations Anno.

location(Anno) -> location()
Types:
Anno = anno()
location() = line() | {line(), column()}

Returns the location of the annotations Anno.

new(Location) -> anno()
Types.
Location = location()
location() = line() | {line(), column()}

Creates a new collection of annotations given alocation.

set file(File, Anno) -> Anno
Types:
File filename()
Anno = anno()
filename() = file:filename all()

Modifies the filename of the annotations Anno.

set generated(Generated, Anno) -> Anno
Types:

Generated = generated()

Anno = anno()

generated() boolean()

Modifies the generated marker of the annotations Anno.

set line(Line, Anno) -> Anno
Types:

Line = line()

Anno = anno()

line() = integer() >= 0
Modifies the line of the annotations Anno.

set location(Location, Anno) -> Anno
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 119

erl_anno

Location =
Anno = anno
location()

)
line() | {line(), column()}

Modifies the location of the annotations Anno.

location()
(

set record(Record, Anno) -> Anno
Types.

Record = record()

Anno = anno()

record() = boolean()

Modifies the record marker of the annotations Anno.

set text(Text, Anno) -> Anno

Types.
Text = text()
Anno = anno()

text() = string()
Modifies the text of the annotations Anno.

text (Anno) -> text() | undefined
Types.

Anno = anno()

text() = string()

Returns the text of the annotations Anno. If thereis no text, undef i ned isreturned.

to term(Anno) -> anno _term()
Types:
Anno = anno()
Returns the term representing the annotations Anno.

See aso from_term().

See Also

erl _parse(3),erl_scan(3)

120 | Ericsson AB. All Rights Reserved.: STDLIB

erl_error

erl_error

Erlang module

This module provides functions for pretty-printing errors and exceptions. It is used by both the shel | and by
proc_|i b to print exceptions.

It is possible for the module raising an error to provide additional information by calling er r or / 3 with extra error
information. More details about this mechanism is described in EEP-54.

Data Types

format options() =
#{column => column(),
stack _trim fun => stack trim fun(),
format fun => format fun()}

A map with formatting options.

stack trim fun() =
fun((module(), atom(), arity()) -> boolean())

A fun used to trim the end of the stacktrace. It is called with module, function, and arity from an entry from the
stacktrace. Thefunisto returnt r ue if the entry should be trimmed, and f al se otherwise. The default valueis:

fun(_, ,) -> false end

format fun() = fun((term(), column()) -> iolist())
A fun used to format function arguments for BIF and function calls. By default the following fun will be used:

fun(Term, I) -> io lib:print(Term, I, 80, 30) end
column() = integer() >=1
Start column number. Default is 1.

Exports

format exception(Class, Reason, StackTrace) -> unicode:chardata()

format exception(Class, Reason, StackTrace, Options) ->
unicode:chardata()

Types:

Class = error | exit | throw

Reason = term()

StackTrace = erlang:stacktrace()

Options = format options()
Format the error reason and stack back-trace caught usingt ry ... cat ch in the same style asthe shell formats them.
Example:

Ericsson AB. All Rights Reserved.: STDLIB | 121

href

erl_error

try
do_something()
catch
C:R:Stk ->
Message = erl error:format exception(C, R, Stk),
io:format(LogFile, "~ts\n", [Message])
end

If error_info is provided with the exception, f or mat _excepti on will use that information to provide
additional information about the exception.

Example:
try
erlang:raise(badarg,[], [{error _info,#{}}1])
catch
C:R:Stk ->

Message = erl error:format exception(C, R, Stk),
io:format(LogFile, "~ts\n", [Messagel)
end

Seeer | ang: error/ 3 for details on how to raise an exception with er r or _i nf o included.

Callback Functions

The following functions are to be exported from an Error Info handler.

Exports

Module:format error(Reason, StackTrace) -> ErrorDescription
Types:
Reason = term()
StackTrace = erl ang: stacktrace()
Argunent Posi tion = pos_integer()
ErrorDescription =
#{ Argument Posi tion => uni code: chardat a(),
general => uni code: chardata(),
reason => uni code: chardata() }

This callback iscalled when format _excepti on/ 4 or similar functionality wants to provide extra information
about an error. The Modul e:Funct i on called isthe one specificed by theer r or _i nf o map.

The function should return a map with additional information about what have caused the exception. The possible
keys of the map are:
Argunent Posi tion = pos_integer()
The position of the argument that caused the error starting at 1.
gener al
An error that is not associated with any argument caused the error.
reason
If the Reason should be printed differently than the default way.

If the text returned includes new-lines, f or mat _except i on/ 4 will indent the text correctly.
Example:

122 | Ericsson AB. All Rights Reserved.: STDLIB

erl_error

-module(my error _module).
-export([atom to string/1, format error/2]).

atom to string(Arg) when is atom(Arg) ->
atom to list(Arg);
atom to string(Arg) ->
erlang:error(badarg, [Arg],
[{error_info,#{ module => ?MODULE,
cause => #{ 1 => "should be an atom" }}}]).

format error(Reason, [{ M, F, As,Info}| 1) ->
ErrorInfo = proplists:get value(error _info, Info, #{}),
ErrorMap = maps:get(cause, ErrorInfo),
ErrorMap#{ general => "optional general information",
reason => io_lib:format("~p: ~p",[?MODULE, Reason]) }.

1> c(my error _module).

{ok,my error _module}

2> my error module:atom to string(1l).

** exception error: my error module: badarg

in function my error module:atom to string/1

called as my error module:atom to string(1l)
*** argument 1: should be an atom
*** optional general information

Ericsson AB. All Rights Reserved.: STDLIB | 123

erl_eval

erl_eval

Erlang module

This module provides an interpreter for Erlang expressions. The expressions are in the abstract syntax as returned by
er| _par se, the Erlang parser, or i o.

Data Types

bindings() = [{name(), value()}]
binding struct() = orddict:orddict() | map()

A binding structure. Itiseither amap or anor ddi ct .er| _eval will always return the same type asthe one given.

expression() = erl parse:abstract expr()
expressions() = [erl parse:abstract expr()]

Asreturned by er | _par se: parse_exprs/ lori o: parse_erl _exprs/ 2.
expression list() = [expression()]
func spec() =

{Module :: module(), Function :: atom()} | function()
1fun_eval handler() =
fun((Name :: atom(),
Arguments :: expression list(),
Bindings :: binding struct()) ->
{value,
Value :: value(),

NewBindings :: binding struct()})

1fun_value handler() =
fun((Name :: atom(), Arguments :: [term()]) ->
Value :: value())
local function handler() =
{value, 1fun _value handler(
{eval, 1fun_eval handler()}
none

)TI

Further described in section Local Function Handler in this module

name() = term()

nlfun_handler() =
fun((FuncSpec :: func spec(), Arguments :: [term()]) -> term())

non_local function handler() = {value, nlfun_handler()} | none
Further described in section Non-Local Function Handler in this module.
value() = term()

Exports

add binding(Name, Value, BindingStruct) -> binding struct()
Types:

124 | Ericsson AB. All Rights Reserved.: STDLIB

erl_eval

Name = name()
Value = value()
BindingStruct = binding struct()

Adds binding Nane=Val ue to Bi ndi ngSt r uct . Returns an updated binding structure.

binding(Name, BindingStruct) -> {value, value()} | unbound
Types.

Name = name()

BindingStruct = binding struct()

Returns the binding of Name in Bi ndi ngSt ruct .

bindings(BindingStruct :: binding struct()) -> bindings()
Returnsthelist of bindings contained in the binding structure.

del binding(Name, BindingStruct) -> binding struct()
Types.

Name = name()

BindingStruct = binding struct()

Removes the binding of Narme in Bi ndi ngSt r uct . Returns an updated binding structure.

expr(Expression, Bindings) -> {value, Value, NewBindings}
expr(Expression, Bindings, LocalFunctionHandler) ->
{value, Value, NewBindings}

expr(Expression, Bindings, LocalFunctionHandler,
NonLocalFunctionHandler) ->
{value, Value, NewBindings}

expr(Expression, Bindings, LocalFunctionHandler,
NonLocalFunctionHandler, ReturnFormat) ->
{value, Value, NewBindings} | Value

Types.

Expression = expression()

Bindings = binding struct()

LocalFunctionHandler = local function handler()

NonLocalFunctionHandler = non_local function_handler()

ReturnFormat = none | value

Value = value()

NewBindings = binding struct()
Evaluates Expressi on with the set of bindings Bi ndi ngs. Expression is an expression in
abstract syntax. For an explanation of when and how to use arguments Local Functi onHandl er and
NonLocal Functi onHandl er, see sections Local Function Handler and Non-Local Function Handler in this
module.

Returns{val ue, Val ue, NewBi ndi ngs} by default. If Ret ur nFor mat isval ue, only Val ue isreturned.

Ericsson AB. All Rights Reserved.: STDLIB | 125

erl_eval

expr list(ExpressionList, Bindings) -> {ValueList, NewBindings}
expr list(ExpressionList, Bindings, LocalFunctionHandler) ->
{ValuelList, NewBindings}

expr list(ExpressionList, Bindings, LocalFunctionHandler,
NonLocalFunctionHandler) ->
{ValuelList, NewBindings}

Types:
ExpressionList = expression list()
Bindings = binding struct()
LocalFunctionHandler = local function handler()
NonLocalFunctionHandler = non_local function_handler()
ValuelList = [value()]
NewBindings = binding struct()
Evaluates a list of expressions in parallel, using the same initial bindings for each expression. Attempts are made to

merge the bindings returned from each evaluation. Thisfunctionisuseful inLocal Funct i onHandl er , see section
Loca Function Handler in this module.

Returns{ Val ueLi st, NewBi ndi ngs}.

exprs(Expressions, Bindings) -> {value, Value, NewBindings}
exprs(Expressions, Bindings, LocalFunctionHandler) ->
{value, Value, NewBindings}

exprs(Expressions, Bindings, LocalFunctionHandler,
NonLocalFunctionHandler) ->
{value, Value, NewBindings}

Types:

Expressions = expressions()

Bindings = binding struct()

LocalFunctionHandler = local function handler()

NonLocalFunctionHandler = non_local function handler()

Value = value()

NewBindings = binding struct()
Evaluates Expr essi ons with the set of bindings Bi ndi ngs, where Expr essi ons isa sequence of expressions
(inabstract syntax) of atypethat canbereturnedbyi o: par se_er| _expr s/ 2. For an explanation of when and how

to use arguments Local Functi onHandl er and NonLocal Funct i onHandl er, see sections Local Function
Handler and Non-Local Function Handler in this module.

Returns{val ue, Val ue, NewBi ndi ngs}

new bindings() -> binding struct()
Returns an empty binding structure.

Local Function Handler

During evaluation of a function, no calls can be made to local functions. An undefined function error would be
generated. However, the optional argument Local Funct i onHandl er canbeusedtodefineafunctionthatiscalled
when thereisacall to alocal function. The argument can have the following formats:

126 | Ericsson AB. All Rights Reserved.: STDLIB

erl_eval

{val ue, Func}
This defines alocal function handler that is called with:

Func(Name, Arguments)

Nane is the name of the local function (an atom) and Ar gunent s is alist of the evaluated arguments. The
function handler returns the value of the local function. In this case, the current bindings cannot be accessed. To
signal an error, the function handler callsexi t / 1 with a suitable exit value.

{eval , Func}
This defines alocal function handler that is called with:

Func(Name, Arguments, Bindings)

Nane is the name of the local function (an atom), Ar gunent s is alist of the unevaluated arguments, and
Bi ndi ngs arethe current variable bindings. The function handler returns:

{value,Value,NewBindings}

Val ue isthe value of thelocal function and NewBi ndi ngs are the updated variable bindings. In this case, the
function handler must itself evaluate all the function arguments and manage the bindings. To signal an error, the
function handler callsexi t / 1 with asuitable exit value.

none

Thereisno local function handler.

Non-Local Function Handler

Theoptional argument NonLocal Funct i onHandl er canbeusedtodefineafunctionthatiscalledinthefollowing
cases:

e A functional object (fun) iscalled.

e A built-in functionis called.

e Afunctioniscalled using the M F syntax, where Mand F are atoms or expressions.
* Anoperator Op/ Aiscaled (thisishandled asacall to functioner | ang: Op/ A).

Exceptionsarecalstoer | ang: appl y/ 2, 3; neither of thefunction handlersare called for such calls. The argument
can have the following formats:

{val ue, Func}
This defines anon-local function handler that is called with:

Func(FuncSpec, Arguments)

FuncSpec isthe name of the function on the form { Modul e, Functi on} or afun, and Ar gunent s isa
list of the evaluated arguments. The function handler returns the value of the function. To signal an error, the
function handler callsexi t / 1 with asuitable exit value.

none
Thereis no non-local function handler.

Ericsson AB. All Rights Reserved.: STDLIB | 127

erl_eval

For calls such as er | ang: appl y(Fun, Args) or erl ang: appl y(Mdul e, Function, Args),
the call of the non-local function handler corresponding to the cal to erl ang: apply/ 2, 3 itsdf
(Func({erlang, apply}, [Fun, Args]) orFunc({erlang, apply}, [Mdule, Function,
Ar gs])) never takes place.

The non-local function handler is however caled with the evaluated arguments of the cal to
erl ang: appl y/ 2, 3: Func(Fun, Args) or Func({Mdul e, Function}, Args) (assuming that
{Modul e, Function} isnot{erlang, apply}).

Callstofunctionsdefined by evaluating funexpressions” f un ... end" arealso hidden from non-local function
handlers.

The non-local function handler argument is probably not used as frequently as the local function handler argument. A
possible useisto cal exi t / 1 on callsto functions that for some reason are not allowed to be called.

Known Limitation

Undocumented functions in this module are not to be used.

128 | Ericsson AB. All Rights Reserved.: STDLIB

erl_expand_records

erl_expand_records

Erlang module

This module expands records in a module.

Exports

module(AbsForms, CompileOptions) -> AbsForms2

Types:
AbsForms = AbsForms2 = [erl parse:abstract form()]
CompileOptions = [compile:option()]

Expands all records in a module to use explicit tuple operations and adds explicit module names to cals to BIFs and
imported functions. The returned module has no references to records, attributes, or code.

See Also
Section The Abstract Format in ERTS User's Guide.

Ericsson AB. All Rights Reserved.: STDLIB | 129

erl_id_trans

erl_id_trans

Erlang module

This module performs an identity parse transformation of Erlang code. It is included as an example for users who
wants to write their own parse transformers. If option { par se_t r ansf or m Modul e} is passed to the compiler,
auser-written function par se_t ransf or nf 2 is called by the compiler before the code is checked for errors.

Beforethefunction par se_t r ansf or miscalled, the Erlang Compiler checksif the parse transformation can handle
abstract code with column numbers: If the function par se_t ransf or m_i nf o/ 0 is implemented and returns a
map where the key er r or _| ocat i on is associated with the value | i ne, the compiler removes column numbers
from the abstract code before calling the parse transform. Otherwise, the compiler passes the abstract code on without
modification.

Exports

parse transform(Forms, Options) -> Forms

Types:
Forns = [erl _parse:abstract forn() | erl_parse:form.info()]
Options = [conpile:option()]

Performs an identity transformation on Erlang forms, as an example.

parse_transform_info() -> Info
Types:
Info = #{'error_location' => 'colum' | 'line'}

Returns information about the parse transform itself.

Parse Transformations

Parse transformations are used if a programmer wants to use Erlang syntax, but with different semantics. The original
Erlang code is then transformed into other Erlang code.

Programmers are strongly advised not to engage in parse transformations. No support is offered for problems
encountered.

See Also
erl _parse(3),conpile(3)

130 | Ericsson AB. All Rights Reserved.: STDLIB

erl_internal

erl_internal

Erlang module

This module defines Erlang BIFs, guard tests, and operators. This module is only of interest to programmers who
manipulate Erlang code.

Exports

add predefined functions(Forms) -> UpdatedForms

Types:
Forms = [erl parse:abstract form() | erl parse:form info()]
UpdatedForms =

[erl parse:abstract form() | erl parse:form info()]

Addsto For ns the code for the standard pre-defined functions (such as modul e_i nf o/ 0) that are to be included
in every module.

arith op(OpName, Arity) -> boolean()
Types:
OpName = atom()
Arity = arity()
Returnst r ue if OpNane/ Ari t y isan arithmetic operator, otherwisef al se.

bif(Name, Arity) -> boolean()
Types:
Name = atom()
Arity = arity()
Returnst r ue if Nane/ Ari t y isan Erlang BIF that is automatically recognized by the compiler, otherwisef al se.

bool op(OpName, Arity) -> boolean()
Types:
OpName = atom()
Arity = arity()
Returnst r ue if OpNane/ Ari t y isaBoolean operator, otherwisef al se.

comp _op(OpName, Arity) -> boolean()
Types:

OpName = atom()

Arity = arity()

Returnst r ue if OpNamne/ Ari t y isacomparison operator, otherwisef al se.

guard bif(Name, Arity) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 131

erl_internal

Name = atom()
Arity = arity()
Returnst r ue if Nane/ Ari t y isan Erlang BIF that is allowed in guards, otherwisef al se.

list op(OpName, Arity) -> boolean()
Types:
OpName = atom()
Arity = arity()
Returnst r ue if OpNamne/ Ari ty isalist operator, otherwisef al se.

op _type(OpName, Arity) -> Type
Types:
OpName = atom()
Arity = arity()
Type = arith | bool | comp | list | send
Returns the Type of operator that OpNane/ Ari t y belongs to, or generates af unct i on_cl ause error if it is
not an operator.

send op(OpName, Arity) -> boolean()
Types:
OpName = atom()
Arity = arity()
Returnst r ue if OpNane/ Ari t y isasend operator, otherwisef al se.

type test(Name, Arity) -> boolean()
Types:
Name = atom()
Arity = arity()
Returnst r ue if Nane/ Ari t y isavalid Erlang type test, otherwisef al se.

132 | Ericsson AB. All Rights Reserved.: STDLIB

erl_lint

erl_lint

Erlang module

This module is used to check Erlang code for illegal syntax and other bugs. It aso warns against coding practices
that are not recommended.

The errors detected include:
¢ Redefined and undefined functions

e Unbound and unsafe variables

e lllegal record use

The warnings detected include:

e Unused functions and imports

e Unused variables

* Variablesimported into matches

e Variablesexported fromi f /case/r ecei ve

* Variables shadowed in funs and list comprehensions

Some of the warnings are optional, and can be turned on by specifying the appropriate option, described below.

The functions in this module are invoked automatically by the Erlang compiler. There is no reason to invoke these
functions separately unless you have written your own Erlang compiler.

Data Types
error_info() =

{erl _anno:location() | none, module(), error _description()}
error_description() = term()

Exports

format_error(ErrorDescriptor) -> io lib:chars()
Types:
ErrorDescriptor = error _description()

Takesan Er r or Descri pt or and returnsastring that describesthe error or warning. Thisfunctionisusually called
implicitly when processing an Er r or | nf o structure (see section Error Information).

is guard test(Expr) -> boolean()
Types:
Expr = erl parse:abstract expr()

Tests if Expr is alegal guard test. Expr is an Erlang term representing the abstract form for the expression.
erl _parse: parse_exprs(Tokens) can beusedto generate alist of Expr .

module(AbsForms) -> {ok, Warnings} | {error, Errors, Warnings}

module(AbsForms, FileName) ->
{ok, Warnings} | {error, Errors, Warnings}

module(AbsForms, FileName, CompileOptions) ->

Ericsson AB. All Rights Reserved.: STDLIB | 133

erl_lint

{ok, Warnings} | {error, Errors, Warnings}

Types:
AbsForms = [erl parse:abstract form() | erl parse:form info()]
FileName = atom() | string()

CompileOptions = [compile:option()]
Warnings = Errors = [{SourceFile, [ErrorInfo]}]
SourceFile = file:filename()

ErrorInfo = error_info()
Checks dl the formsin amodule for errors. It returns:
{ ok, War ni ngs}

There are no errorsin the module.
{error, Errors, Vr ni ngs}

There are errors in the module.

Asthismoduleis of interest only to the maintainers of the compiler, and to avoid the same description in two places,
the elements of Qpt i ons that control the warnings are only described in the conpi | e(3) module.

AbsFor ns of amodule, which comes from afile that is read through epp, the Erlang preprocessor, can come from
many files. Thismeansthat any referencesto errors must include the filename, seetheepp(3) module or parser (see
theer| _par se(3) module). The returned errors and warnings have the following format:

[{SourceFile, [ErrorInfo]}]

The errors and warnings are listed in the order in which they are encountered in the forms. The errors from one file
can therefore be split into different entriesin the list of errors.

Error Information

Er r or | nf o isthe standard Er r or | nf o structure that is returned from all 1/0 modules. The format is as follows:
{ErrorLine, Module, ErrorDescriptor}

A string describing the error is obtained with the following call:

Module:format error(ErrorDescriptor)

See Also
epp(3),erl _parse(3)

134 | Ericsson AB. All Rights Reserved.: STDLIB

erl_parse

erl_parse

Erlang module

This module is the basic Erlang parser that converts tokens into the abstract form of either forms (that is, top-level
constructs), expressions, or terms. The Abstract Format is described in the ERTS User's Guide. Notice that atoken list
must end with the dot token to be acceptable to the parse functions (seetheer | _scan(3)) module.

Data Types

abstract clause()

Abstract form of an Erlang clause.
abstract expr()

Abstract form of an Erlang expression.
abstract form()

Abstract form of an Erlang form.
abstract type()

Abstract form of an Erlang type.

erl parse tree() =
abstract clause() |
abstract expr() |
abstract form() |
abstract type()

af binelement()

Abstract representation of an element of a bitstring.

af field decl()

Abstract representation of arecord field.

af generator()

Abstract representation of a generator or a bitstring generator.
af _remote function()>

Abstract representation of aremote function call.

error _description() = term()
error_info() =
{erl _anno:location(), module(), error description()}
form info() =
{eof, erl anno:location()} |
{error, erl scan:error _info() | error _info()} |
{warning, erl scan:error info() | error _info()}

Tuples{error, error_info()} and{warning, error_info()},denoting syntacticaly incorrect forms
andwarnings,and{ eof , |i ne() }, denoting an end-of-stream encountered before acompl ete form had been parsed.

Ericsson AB. All Rights Reserved.: STDLIB | 135

erl_parse

token() = erl scan:token()

Exports

abstract(Data) -> AbsTerm
Types:

Data = term()

AbsTerm = abstract expr()

Converts the Erlang data structure Dat a into an abstract form of type AbsTer m This function is the inverse of
nornal i se/ 1.

erl _parse:abstract (T) isequivalenttoer| parse: abstract(T, 0).

abstract(Data, Options) -> AbsTerm
Types:
Data = term()
Options = Location | [Option]
Option =
{encoding, Encoding} | {line, Line} | {location, Location}
Encoding = latinl | unicode | utf8 | none | encoding func()
Line = erl anno:line()
Location = erl _anno:location()
AbsTerm = abstract expr()
encoding func() = fun((integer() >= 0) -> boolean())

Converts the Erlang data structure Dat a into an abstract form of type AbsTer m

Each node of AbsTer mis assigned an annotation, see er | _anno(3) . The annotation contains the location given
by option| ocati on or by option| i ne. Option| ocat i on overridesoption | i ne. If neither option| ocati on
nor option | i ne isgiven, O is used aslocation.

Option Encodi ng is used for selecting which integer lists to be considered as strings. The default is to use the
encoding returned by functionepp: def aul t _encodi ng/ 0. Valuenone meansthat nointeger listsare considered
asstrings. encodi ng_f unc() iscalled with oneinteger of alist at atime; if it returnst r ue for every integer, the
list is considered a string.

anno_from term(Term) -> erl parse tree() | form info()
Types:
Term = term()
Assumes that Ter mis a term with the same structure as a er | _par se tree, but with terms, say T, where a

er | _par se tree has collections of annotations. Returnsaer | _par se tree where each term T is replaced by the
valuereturned by erl _anno: from t er m(T) . Theterm Ter mistraversed in adepth-first, left-to-right fashion.

anno_to term(Abstr) -> term()
Types:

136 | Ericsson AB. All Rights Reserved.: STDLIB

erl_parse

Abstr = erl parse tree() | form info()

Returns a term where each collection of annotations Anno of the nodes of theer | _par se tree Abst r isreplaced
by the term returned by er | _anno: t o_t er m(Anno) . Theer | _par se treeistraversed in a depth-first, left-to-
right fashion.

fold anno(Fun, Acc@, Abstr) -> Accl
Types:
Fun = fun((Anno, AccIn) -> AccOut)
Anno = erl_anno:anno()

AccO = Accl = AccIn = AccOut = term()
Abstr = erl parse tree() | form info()

Updates an accumulator by applying Fun on each collection of annotations of theer | _par se tree Abst r . Thefirst
call to Fun has Accl n asargument, the returned accumulator AccQut is passed to the next call, and so on. Thefinal
value of the accumulator isreturned. Theer | _par se treeistraversed in a depth-first, left-to-right fashion.

format error(ErrorDescriptor) -> Chars
Types:
ErrorDescriptor = error_description()
Chars = [char() | Chars]

Usesan Er ror Descri pt or and returns a string that describes the error. This function is usually called implicitly
when an Er r or | nf o structure is processed (see section Error |nformation).

map_anno(Fun, Abstr) -> NewAbstr
Types.
Fun = fun((Anno) -> NewAnno)

Anno = NewAnno = erl anno:anno()
Abstr = NewAbstr = erl parse tree() | form info()

Modifies the er | _par se tree Abstr by applying Fun on each collection of annotations of the nodes of the
erl _parsetree Theer| par se treeistraversed in adepth-first, left-to-right fashion.

mapfold anno(Fun, AccO®, Abstr) -> {NewAbstr, Accl}
Types.
Fun = fun((Anno, AccIn) -> {NewAnno, AccOut})

Anno = NewAnno = erl anno:anno()
AccO = Accl = AccIn = AccOut = term()
Abstr = NewAbstr = erl parse tree() | form info()

Modifies the er | _par se tree Abstr by applying Fun on each collection of annotations of the nodes of the
erl _par se tree, while at the same time updating an accumulator. The first call to Fun has Accl n as second
argument, the returned accumulator Acc Qut ispassed to the next call, and so on. Themodifieder | _par se treeand
thefinal value of the accumulator arereturned. Theer | _par se treeistraversed in adepth-first, left-to-right fashion.

new anno(Term) -> Abstr
Types.

Ericsson AB. All Rights Reserved.: STDLIB | 137

erl_parse

Term = term()
Abstr = erl parse tree() | form info()

Assumesthat Ter misaterm with the same structureasaer | _par se tree, but with locationswhereaer | _par se
tree has collections of annotations. Returnsaer | _par se treewhere each location L isreplaced by the value returned
by er| _anno: new(L) . Theterm Ter mistraversed in a depth-first, left-to-right fashion.

normalise(AbsTerm) -> Data
Types:
AbsTerm = abstract expr()
Data = term()

Converts the abstract form Abs Ter mof aterm into a conventional Erlang data structure (that is, the term itself). This
functionistheinverse of abstract/ 1.

parse exprs(Tokens) -> {ok, ExprList} | {error, ErrorInfo}
Types:

Tokens = [token()]

ExprList = [abstract expr()]

ErrorInfo = error_info()

Parses Tokens asif it wasalist of expressions. Returns one of the following:
{ok, ExprlList}

The parsing was successful. Expr Li st isalist of the abstract forms of the parsed expressions.
{error, Errorlnfo}

An error occurred.

parse form(Tokens) -> {ok, AbsForm} | {error, ErrorInfo}
Types:

Tokens = [token()]

AbsForm = abstract form()

ErrorInfo = error info()

Parses Tokens asif it was aform. Returns one of the following:
{ok, AbsForn}

The parsing was successful. Abs For mis the abstract form of the parsed form.
{error, Errorlnfo}

An error occurred.

parse term(Tokens) -> {ok, Term} | {error, ErrorInfo}
Types.

Tokens = [token()]

Term = term()

ErrorInfo = error_info()

Parses Tokens asif it was aterm. Returns one of the following:

138 | Ericsson AB. All Rights Reserved.: STDLIB

erl_parse

{ok, Tern}

The parsing was successful. Ter mis the Erlang term corresponding to the token list.
{error, Errorlnfo}

An error occurred.

tokens (AbsTerm) -> Tokens
tokens (AbsTerm, MoreTokens) -> Tokens
Types:
AbsTerm = abstract expr()
MoreTokens = Tokens = [token()]

Generates a list of tokens representing the abstract form AbsTer mof an expression. Optionally, Mor eTokens is
appended.

Error Information

Err or | nf o isthe standard Er r or | nf o structure that is returned from all 1/O modules. The format is as follows:
{ErrorLine, Module, ErrorDescriptor}
A string describing the error is obtained with the following call:

Module:format error(ErrorDescriptor)

See Also
erl _anno(3),erl _scan(3),io(3), section The Abstract Format in the ERTS User's Guide

Ericsson AB. All Rights Reserved.: STDLIB | 139

erl_pp

erl_pp

Erlang module

The functions in this module are used to generate aesthetically attractive representations of abstract forms, which are
suitable for printing. All functions return (possibly deep) lists of characters and generate an error if the form iswrong.

All functions can have an optional argument, which specifies a hook that is called if an attempt is made to print an
unknown form.

Data Types
hook function() =
none |
fun((Expr :: erl parse:abstract expr(),
CurrentIndentation :: integer(),
CurrentPrecedence :: integer() >= 0,
Options :: options()) ->

io lib:chars())

Optiona argument HookFunct i on, shown in the functions described in thismodule, definesafunction that iscalled
when an unknown form occurs where there is to be a valid expression. If HookFunct i on isequal to none, there
is no hook function.

The called hook function isto return a (possibly deep) list of characters. Function expr / 4 isuseful in a hook.
If Current | ndent at i on isnegative, there are no line breaks and only a space is used as a separator.

option() =
{hook, hook function()} |
{encoding, latinl | unicode | utf8} |
{quote singleton atom types, boolean()} |
{linewidth, integer() >= 1} |
{indent, integer() >= 1}

Theoption quot e_si ngl et on_at om t ypes isused to add quotes to all singleton atom types.
Theoption| i newi dt h controls the maximum line width for formatted lines (defaults to 72 characters).
Theoptioni ndent controls the indention for formatted lines (defaults to 4 spaces).

options() = hook function() | [option()]

Exports

attribute(Attribute) -> io lib:chars()
attribute(Attribute, Options) -> io lib:chars()
Types:
Attribute = erl parse:abstract form()
Options = options()
Sameasf orni 1, 2, but only for attribute At t ri but e.

140 | Ericsson AB. All Rights Reserved.: STDLIB

erl_pp

expr(Expression) -> io lib:chars()
expr(Expression, Options) -> io lib:chars()
expr(Expression, Indent, Options) -> io lib:chars()
expr(Expression, Indent, Precedence, Options) -> io lib:chars()
Types:

Expression = erl parse:abstract expr()

Indent = integer()

Precedence = integer() >= 0

Options = options()
Prints one expression. It is useful for implementing hooks (see section Known Limitations).

exprs(Expressions) -> io lib:chars()
exprs(Expressions, Options) -> io lib:chars()
exprs(Expressions, Indent, Options) -> io lib:chars()
Types:

Expressions = [erl parse:abstract expr()]

Indent = integer()

Options = options()
Sameasf orni 1, 2, but only for the sequence of expressionsin Expr essi ons.

form(Form) -> io lib:chars()
form(Form, Options) -> io lib:chars()
Types.
Form = erl parse:abstract form() | erl parse:form info()
Options = options()
Pretty prints a For m which is an abstract form of atypethat isreturned by er | _par se: par se_f orm 1.

function(Function) -> io lib:chars()
function(Function, Options) -> io lib:chars()
Types.
Function = erl parse:abstract form()
Options = options()
Sameasf orni 1, 2, but only for function Funct i on.

guard(Guard) -> io lib:chars()
guard(Guard, Options) -> io lib:chars()
Types.
Guard = [erl parse:abstract expr()]
Options = options()
Sameasf orni 1, 2, but only for the guard test Guar d

Known Limitations

It is not possible to have hook functions for unknown forms at other places than expressions.

Ericsson AB. All Rights Reserved.: STDLIB | 141

erl_pp

See Also
erl _eval (3),erl _parse(3),io(3)

142 | Ericsson AB. All Rights Reserved.: STDLIB

erl_scan

erl_scan

Erlang module

This module contains functions for tokenizing (scanning) characters into Erlang tokens.

Data Types

category() = atom()
error _description() = term()

error_info() =
{erl_anno:location(), module(), error description()}
option() =
return | return _white spaces | return_comments | text |
{reserved word fun, resword fun()}

options() = option() | [option()]
symbol() = atom() | float() | integer() | string()
resword fun() = fun((atom()) -> boolean())

token() =
{category(), Anno :: erl _anno:anno(), symbol()} |
{category(), Anno :: erl anno:anno()}

tokens() = [token()]
tokens result() =

{ok, Tokens :: tokens(), EndLocation :: erl anno:location()} |
{eof, EndLocation :: erl anno:location()} |
{error,
ErrorInfo :: error info(),
EndLocation :: erl anno:location()}
Exports

category(Token) -> category()
Types:

Token = token()
Returns the category of Token.

column(Token) -> erl anno:column() | undefined
Types.

Token = token()
Returns the column of Token's collection of annotations.

end location(Token) -> erl anno:location() | undefined
Types.
Token = token()
Returns the end location of the text of Token's collection of annotations. If thereis no text, undef i ned isreturned.

Ericsson AB. All Rights Reserved.: STDLIB | 143

erl_scan

format _error(ErrorDescriptor) -> string()
Types.
ErrorDescriptor = error _description()

Usesan Err or Descri pt or and returns a string that describes the error or warning. This function isusually called
implicitly when an Er r or | nf o structureis processed (see section Error Information).

line(Token) -> erl anno:line()
Types:
Token = token()

Returnsthe line of Token's collection of annotations.

location(Token) -> erl anno:location()
Types:

Token = token()
Returns the location of Token's collection of annotations.

reserved word(Atom :: atom()) -> boolean()
Returnst r ue if At omisan Erlang reserved word, otherwisef al se.

string(String) -> Return
string(String, StartLocation) -> Return
string(String, StartLocation, Options) -> Return
Types:

String = string()

Options = options()

Return =
{ok, Tokens :: tokens(), EndLocation} |
{error, ErrorInfo :: error info(), ErrorLocation}

StartLocation = EndLocation = ErrorLocation = erl anno:location()

Takesthe list of characters St r i ng and triesto scan (tokenize) them. Returns one of the following:
{ok, Tokens, EndLocati on}

Tokens arethe Erlang tokensfrom St r i ng. EndLocat i on isthefirst location after the last token.
{error, Errorlinfo, ErrorLocation}

An error occurred. Er r or Locat i on isthefirst location after the erroneous token.

string(String) isequivadenttostring(String, 1),andstring(String, StartLocation) is
equivalenttostring(String, StartLocation, []).

Start Locati on indicates the initial location when scanning starts. If StartLocati on is a line, Anno,
EndLocat i on,andError Locati on arelines. If St art Locat i on isapair of alineand acolumn, Anno takes
the form of an opagque compound data type, and EndLocat i on and Err or Locat i on are pairs of aline and a
column. The token annotations contain information about the column and the line where the token begins, as well
asthe text of the token (if optiont ext is specified), al of which can be accessed by calling col um/ 1,1 i ne/ 1,
| ocation/1,andt ext/ 1.

144 | Ericsson AB. All Rights Reserved.: STDLIB

erl_scan

A token is atuple containing information about syntactic category, the token annotations, and the terminal symbol.
For punctuation characters (such as; and|) and reserved words, the category and the symbol coincide, and the token
is represented by atwo-tuple. Three-tuples have one of the following forms:

« {atom Anno, atom)}

e {char, Anno, char()}

e {coment, Anno, string()}

« {float, Anno, float()}

e {integer, Anno, integer()}

e {var, Anno, atom()}

e {white_space, Anno, string()}

Valid options:

{reserved_word_fun, reserved_word_fun()}

A callback function that is called when the scanner has found an unquoted atom. If the function returnst r ue,
the unquoted atom itself becomes the category of the token. If the function returns f al se, at ombecomes the
category of the unquoted atom.

return_conmments
Return comment tokens.
return_white_spaces

Return white space tokens. By convention, a newline character, if present, is alwaysthe first character of the text
(there cannot be more than one newline in a white space token).

return
Short for [ret urn_conmments, return_white_spaces].
t ext

Include the token text in the token annotation. The text is the part of the input corresponding to the token.

symbol(Token) -> symbol()
Types:

Token = token()
Returns the symbol of Token.

text(Token) -> erl anno:text() | undefined
Types:
Token = token()

Returns the text of Token's collection of annotations. If thereis no text, undef i ned isreturned.

tokens(Continuation, CharSpec, StartLocation) -> Return
tokens(Continuation, CharSpec, StartLocation, Options) -> Return
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 145

erl_scan

Continuation = return cont() | []
CharSpec = char_spec()
StartLocation = erl anno:location()
Options = options()
Return =
{done,
Result :: tokens result(),
LeftOverChars :: char spec()} |
{more, Continuationl :: return cont()}

char spec() = string() | eof
return_cont()
An opaque continuation.

Thisisthere-entrant scanner, which scans charactersuntil either adot ('.' followed by awhite space) or eof isreached.
It returns:

{done, Result, LeftOverChars}
Indicates that there is sufficient input datato get aresult. Resul t is:
{ok, Tokens, EndLocati on}
The scanning was successful. Tokens isthelist of tokensincluding dot.
{eof, EndLocati on}
End of file was encountered before any more tokens.
{error, Errorlnfo, EndLocation}

An error occurred. Left Over Chars is the remaining characters of the input data, starting from
EndLocat i on.

{nore, Continuationl}

More data is required for building a term. Cont i nuat i on1 must be passed in a new call to t okens/ 3, 4
when more dataiis available.

The Char Spec eof signalsend of file. Lef t Over Char s then takes the value eof aswell.

t okens(Conti nuati on, CharSpec, StartlLocation) isequivalenttotokens(Conti nuati on,
Char Spec, StartlLocation, []).

For a description of the options, seestri ng/ 3.

Error Information

Er r or | nf o isthe standard Er r or | nf o structure that is returned from all 1/0 modules. The format is as follows:
{ErrorLocation, Module, ErrorDescriptor}

A string describing the error is obtained with the following call:

Module:format error(ErrorDescriptor)

Notes

The continuation of thefirst call to the re-entrant input functions must be[] . For acomplete description of how there-
entrant input scheme works, see Armstrong, Virding and Williams: ‘Concurrent Programming in Erlang’, Chapter 13.

146 | Ericsson AB. All Rights Reserved.: STDLIB

erl_scan

See Also

erl _anno(3),erl _parse(3),io(3)

Ericsson AB. All Rights Reserved.: STDLIB | 147

erl_tar

erl_tar

Erlang module

This module archives and extract filesto and from atar file. This module supports reading most common tar formats,
namely v7, STAR, USTAR, and PAX, as well as some of GNU tar's extensions to the USTAR format (sparse files
most notably). It produces tar archives in USTAR format, unless the files being archived require PAX format due
to restrictions in USTAR (such as unicode metadata, filename length, and more). As such, er| _t ar supports tar
archives produced by most all modern tar utilities, and produces tarballs which should be similarly portable.

By convention, the name of atar fileistoendin". t ar ". To abide to the convention, add ". t ar " to the name.
Tar files can be created in one operation using function cr eat e/ 2 or cr eat e/ 3.
Alternatively, for more control, use functionsopen/ 2, add/ 3, 4, andcl ose/ 1.

To extract al filesfrom atar file, use function ext r act / 1. To extract only some files or to be able to specify some
more options, use function ext r act / 2.

Toreturn alist of thefilesin atar file, usefunctiont abl e/ 1 ort abl e/ 2. To print alist of filesto the Erlang shell,
usefunctiont/ lortt/ 1.

To convert an error term returned from one of the functions above to a readable message, use function
format _error/ 1.

Unicode Support

Iffile:native_name_encodi ng/ 0 returns ut f 8, path names are encoded in UTF-8 when creating tar files,
and path names are assumed to be encoded in UTF-8 when extracting tar files.

Iffile:native_nane_encodi ng/ 0 returns! at i nl, no translation of path namesis done.
Unicode metadata stored in PAX headersis preserved

Other Storage Media

Thef t p module normally accessesthetar fileon disk usingthef i | e module. When other needs arise, you can define
your own low-level Erlang functions to perform the writing and reading on the storage media; use functioni ni t/ 3.

An example of thisis the SFTP support in ssh_sft p: open_t ar/ 3. This function opens a tar file on a remote
machine using an SFTP channel.

Limitations

e |f you must remain compatible with the USTAR tar format, you must ensure file paths being stored are less than
255 bytesin total, with a maximum filename component length of 100 bytes. USTAR uses a header field (prefix)
in addition to the name field, and splits file paths longer than 100 bytes into two parts. This split is done on a
directory boundary, and is done in such away to make the best use of the space available in those two fields, but
in practice thiswill often mean that you have lessthan 255 bytesfor apath. er | _t ar will automatically upgrade
the format to PAX to handle longer filenames, so thisis only an issue if you need to extract the archive with an
older implementation of er | _t ar ort ar which does not support PAX. In this case, the PAX headers will be
extracted as regular files, and you will need to apply them manually.

* Likethe above, if you must remain USTAR compatible, you must also ensure than paths for symbolic/hard links
are no more than 100 bytes, otherwise PAX headers will be used.

148 | Ericsson AB. All Rights Reserved.: STDLIB

erl_tar

Data Types
name_in archive() = string()

open_type() =
file:filename all() |
{binary, binary()} |
{file, file:io device()}
tar descriptor()

Exports

add(TarDescriptor, AddType, Options) -> ok | {error, term()}

add(TarDescriptor, Filename, NameInArchive, Options) ->
ok | {error, term()}
Types:
TarDescriptor = tar descriptor()
Filename = file:filename all()
NameInArchive = name_in archive()
Options = [add opt()]
add type() =
name in archive() | {name in archive(), file:filename all()}
add opt() =
dereference | verbose |
{chunks, integer() >= 1} |
{atime, integer() >= 0} |
{mtime, integer() >= 0} |
{ctime, integer() >= 0} |
{uid, integer() >= 0} |
{gid, integer() >= 0}

Adds afileto atar file that has been opened for writing by open/ 1.

Nanel nAr chi ve isthe name under which the file becomes stored in the tar file. The file gets this name when it
is extracted from the tar file.

Options:
der ef erence

By default, symbolic links are stored as symbolic links in the tar file. To override the default and store the file
that the symbolic link pointsto into the tar file, use option der ef er ence.

ver bose
Prints an informational message about the added file.
{chunks, ChunkSi ze}

Reads data in parts from the file. Thisis intended for memory-limited machines that, for example, builds a tar
file on aremote machine over SFTP, seessh_sft p: open_tar/ 3.

{atime, non_neg_integer()}
Setsthe last time, as POSIX time, when thefilewasread. Seeasofil e:read file i nfo/l.

Ericsson AB. All Rights Reserved.: STDLIB | 149

erl_tar

{ntime, non_neg_integer()}

Setsthe last time, as POSIX time, when the file was written. Seealsofil e: read fil e i nfo/ 1.
{ctime, non_neg_integer()}

Setsthe time, as POSIX time, when the file was created. Seealsofil e:read file_info/ 1.
{uid, non_neg integer()}

Setsthefileowner.fil e:read_fil e_i nfo/ 1.
{gi d, non_neg_i nteger ()}

Sets the group that the file owner belongsto.fil e:read_fil e_i nfo/ 1.

close(TarDescriptor :: tar descriptor()) -> ok | {error, term()}
Closes atar file opened by open/ 2.

create(Name :: file:filename all(), FilelList :: filelist()) ->
ok | {error, {string(), term()}}
Types:
filelist() =

[file:filename() | {name_in archive(), file:filename all()}]

Creates atar file and archives the files whose names are specified in Fi | eLi st intoit. The files can either be read
from disk or be specified as binaries.

create(Name :: file:filename all(),
FileList :: filelist()
Options :: [create opt

)

01) ->
ok | {error, term()} | {error, {string(), term()}}
Types:
filelist() =

[file:filename() | {name_in archive(), file:filename all()}]
create opt() = compressed | cooked | dereference | verbose

Creates a tar file and archives the files whose names are specified in Fi | eLi st into it. The files can either be read
from disk or be specified as binaries.

The optionsin Opt i onLi st modify the defaults as follows:
conpr essed

Theentiretar fileis compressed, asif it has been run through the gzi p program. To abide to the convention that
acompressed tar fileistoend in". tar. gz" or". t gz", add the appropriate extension.

cooked

By default, function open/ 2 opensthetar filein r awmode, which isfaster but does not allow aremote (Erlang)
file server to be used. Adding cooked to the mode list overrides the default and opensthe tar file without option
raw.

der ef erence

By default, symbolic links are stored as symbolic links in the tar file. To override the default and store the file
that the symbolic link points to into the tar file, use option der ef er ence.

150 | Ericsson AB. All Rights Reserved.: STDLIB

erl_tar

ver bose
Prints an informational message about each added file.

extract(Open :: open type()) -> ok | {error, term()}
Extracts al filesfrom atar archive.
If argument Narmre is specified as{ bi nary, Bi nar y}, the contents of the binary is assumed to be atar archive.

If argument Name is specified as {fi |l e, Fd}, Fd is assumed to be a file descriptor returned from function
file:open/2.

Otherwise, Nane isto be afilename.

Leading slashesin tar member nameswill be removed before writing thefile. That is, absolute paths will be turned
into relative paths. There will be an info message written to the error logger when paths are changed in this way.

The conpr essed and cooked flags are invalid when passing a file descriptor with {fi | e, Fd} . Thefileis
assumed to have been opened with the appropriate flags.

extract(Open :: open_type(), Opts :: [extract opt()]) ->
{ok, [{string(), binary()}1} | {error, term()} | ok
Types:
extract opt() =
{cwd, string()} |
{files, [name in archive()1} |
compressed | cooked | memory | keep old files | verbose

Extractsfiles from atar archive.
If argument Nane is specified as{ bi nary, Bi nar y}, the contents of the binary is assumed to be atar archive.

If argument Nane is specified as {fi |l e, Fd}, Fd is assumed to be a file descriptor returned from function
file:open/2.

Otherwise, Nane isto be afilename.
The following options modify the defaults for the extraction as follows:
{cwd, Ond}

Files with relative filenames are by default extracted to the current working directory. With this option, files are
instead extracted into directory Ond.

{files,FileList}

By default, al files are extracted from the tar file. With this option, only those files are extracted whose names
areincludedinFi | eLi st .

conpr essed
With this option, the fileis uncompressed while extracting. If thetar fileis not compressed, thisoption isignored.

Ericsson AB. All Rights Reserved.: STDLIB | 151

erl_tar

cooked
By default, function open/ 2 function opensthetar filein r awmaode, which isfaster but does not allow aremote
(Erlang) file server to be used. Adding cooked to the mode list overrides the default and opens the tar file
without option r aw.

nenory
Instead of extracting to adirectory, thisoption givestheresult asalist of tuples{ Fi | enane, Bi nary},where
Bi nary isabinary containing the extracted data of the file named Fi | enane inthetar file.

keep_old files
By default, all existing files with the same name as filesin the tar file are overwritten. With this option, existing
files are not overwriten.

ver bose

Prints an informational message for each extracted file.

The conpr essed and cooked flags are invalid when passing a file descriptor with {fi | e, Fd}. Thefileis
assumed to have been opened with the appropriate flags.

format error(Atom :: term()) -> string()
Converts an error reason term to a human-readable error message string.

init(UserData :: user data(),
AccessMode :: write | read,
Fun :: file op()) ->
{ok, tar descriptor()} | {error, badarg}
Types:
user data() = term()
file op() =
fun((write | close | read2 | position,
{user data(), iodata()} |
user data() |
{user _data(), integer() >= 0} |
{user data(), integer() >= 0}) ->
ok | eof |
{ok, string() | binary()} |
{ok, integer() >= 0} |
{error, term()})
The Fun isthe definition of what to do when the different storage operations functions are to be called from the higher
tar handling functions (such asadd/ 3, add/ 4, and cl ose/ 1).

The Fun is called when the tar function wants to do a low-level operation, like writing ablock to afile. The Fun is
cadledasFun(Op, {UserData, Paraneters...}),whereQp isthe operation name, User Dat a isthe term
passed as the first argument toi ni t/ 1 and Par anet er s. . . are the data added by the tar function to be passed
down to the storage handling function.

Parameter User Dat a istypically the result of opening alow-level structure like afile descriptor or an SFTP channel
id. The different Fun clauses operate on that very term.

152 | Ericsson AB. All Rights Reserved.: STDLIB

erl_tar

The following are the fun clauses parameter lists:
(wite, {UserData, DataToWite})
Writesterm Dat aToW i t e using User Dat a.
(cl ose, UserData)
Closes the access.
(read2, {UserData, Size})

Reads using User Dat a but only Si ze bytes. Notice that there is only an arity-2 read function, not an arity-1
function.

(position, {UserData, Position})
Setsthe position of User Dat a asdefined for filesinfi | e: position/ 2
Example:
Thefollowing is acomplete Fun parameter for reading and writing on filesusing thef i | e module;

ExampleFun =
fun(write, {Fd,Data}) -> file:write(Fd, Data);
(position, {Fd,Pos}) -> file:position(Fd, Pos);
(read2, {Fd,Size}) -> file:read(Fd, Size);
(close, Fd) -> file:close(Fd)
end

Here Fd was specified to functioni ni t / 3 as:

{ok,Fd} = file:open(Name, ...).
{ok,TarDesc} = erl tar:init(Fd, [write], ExampleFun),

Tar Desc isthen used:
erl tar:add(TarDesc, SomeValueIwantToAdd, FileNameInTarFile),
erl tar:close(TarDesc)

When the er | _t ar core wants to, for example, write a piece of Dat a, it would call Exanpl eFun(wite,
{User Dat a, Dat a}) .

Thisexample with thef i | e module operations is not necessary to use directly, as that is what function open/ 2
in principle does.

The Tar Descri pt or termisnot afile descriptor. You are advised not to rely on the specific contents of this
term, asit can change in future Erlang/OTP releases when more features are added to this module.

open(Open :: open type(), Mode :: [write | compressed | cooked]) ->
{ok, tar descriptor()} | {error, term()}

Creates atar file for writing (any existing file with the same name is truncated).
By convention, the name of atar fileistoendin". t ar ". To abide to the convention, add ". t ar " to the name.
Except for thewr i t e atom, the following atoms can be added to OpenModeli st :

Ericsson AB. All Rights Reserved.: STDLIB | 153

erl_tar

conpr essed

Theentiretar fileis compressed, asif it has been run through the gzi p program. To abide to the convention that
acompressed tar fileistoend in™. t ar. gz" or". t gz", add the appropriate extension.

cooked

By default, the tar fileis opened in r aw mode, which isfaster but does not allow aremote (Erlang) file server to
be used. Adding cooked to the mode list overrides the default and opens the tar file without option r aw.

To add onefile at the time into an opened tar file, use function add/ 3, 4. When you are finished adding files, use
function cl ose/ 1 to closethe tar file.

Theconpr essed and cooked flags areinvalid when passing afile descriptor with { f i | e, Fd} . Thefile must
already be opened with the appropriate flags.

The Tar Descri pt or term isnot afile descriptor. You are advised not to rely on the specific contents of this
term, asit can change in future Erlang/OTP rel eases when more features are added to this module.

table(Open :: open type()) ->
{ok, [name_in archive()]1} | {error, term()}
table(Open :: open_type(),
Opts :: [compressed | verbose | cooked]) ->
{ok, [name_in archive() | tar _entry()1} | {error, term()}

Types:

tar entry() =
{Name :: name in archive(),
Type :: typeflag(),
Size :: integer() >= 0,
MTime :: tar time(),
Mode :: mode(),
Uid :: uid(),
Gid :: gid()}

tar time() = integer() >= 0

typeflag() =

regular | link | symlink | char | block | directory | fifo |
reserved | unknown

mode() = integer() >= 0

uid() = integer() >= 0

gid() = integer() >= 0
Retrieves the names of al filesin the tar file Nane.

t(Name :: file:filename()) -> ok | {error, term()}
Prints the names of all filesin the tar file Nane to the Erlang shell (smilarto "t ar t").

154 | Ericsson AB. All Rights Reserved.: STDLIB

erl_tar

tt(Name :: open type()) -> ok | {error, term()}

Prints names and information about all filesin the tar file Nane to the Erlang shell (similar to "t ar t v").

Ericsson AB. All Rights Reserved.: STDLIB | 155

ets

ets

Erlang module

This module is an interface to the Erlang built-in term storage BIFs. These provide the ability to store very large
guantities of data in an Erlang runtime system, and to have constant access time to the data. (In the case of
order ed_set, see below, accesstimeis proportional to the logarithm of the number of stored objects.)

Data is organized as a set of dynamic tables, which can store tuples. Each table is created by a process. When the
process terminates, the table is automatically destroyed. Every table has access rights set at creation.

Tables are divided into four different types, set, ordered_set, bag, and dupli cate_bag. A set or
or der ed_set tablecan only have one object associated with each key. A bag or dupl i cat e_bag table can have
many objects associated with each key.

The number of tables stored at one Erlang node used to be limited. Thisis no longer the case (except by memory
usage). The previous default limit was about 1400 tables and could be increased by setting the environment variable
ERL_MAX ETS TABLES or the command line option +e before starting the Erlang runtime system. This hard
limit has been removed, but it is currently useful to set the ERL_MAX _ETS TABLES anyway. It should be set
to an approximate of the maximum amount of tables used since an internal table for named tables is sized using
this value. If large amounts of named tables are used and ERL_MAX_ETS_TABLES hasn't been increased, the
performance of named table lookup will degrade.

Notice that there is no automatic garbage collection for tables. Even if there are no references to a table from any
process, it isnot automatically destroyed unlessthe owner processterminates. To destroy atable explicitly, usefunction
del et e/ 1. Thedefault owner isthe processthat created thetable. To transfer table ownership at processtermination,
useoptionhei r or call gi ve_away/ 3.

Some implementation details:

* Inthe current implementation, every object insert and look-up operation resultsin a copy of the object.
« '"$end_of _tabl e' isnotto be used as a key, as this atom is used to mark the end of the table when using
functionsfi rst/ 1 and next/ 2.

Notice the subtle difference between matching and comparing equal, which is demonstrated by table typesset and
ordered_set:

* Two Erlang termsmat ch if they are of the same type and have the same value, so that 1 matches 1, but not 1. 0
(asl.0isafl oat () andnotani nt eger ()).

e Two Erlang terms compar e equal if they either are of the same type and value, or if both are numeric types and
extend to the same value, so that 1 compares equal to both 1 and 1. 0.

e Theordered_set works on the Erlang term order and no defined order exists between an i nt eger ()
and af | oat () that extends to the same value. Hence the key 1 and the key 1. O are regarded as equal in an
order ed_set table.

Failures
Functions in this module fail by raising an error exception with error reason:
badar g

If any argument has the wrong format.

156 | Ericsson AB. All Rights Reserved.: STDLIB

ets

badar g
If the table identifier isinvalid.
badar g
If the operation is denied because of table access rights (protected or private).
systemlimt
Modification of a value causes it to not be representable internally in the VM. For example, incrementation of
acounter past the largest integer representable.
systemlimt

If a match specification passed as argument has excessive nesting which causes scheduler stack exhaustion for
the scheduler that the calling process is executing on. Scheduler stack size can be configured when starting the
runtime system.

Concurrency

This module provides some limited support for concurrent access. All updates to single objects are guaranteed to be
both atomic and isolated. This means that an updating operation to asingle object either succeeds or fails completely
without any effect (atomicity) and that no intermediate results of the update can be seen by other processes (isolation).
Some functionsthat update many objects state that they even guarantee atomicity and isolation for the entire operation.
In database terms the isolation level can be seen as "seridlizable", asif al isolated operations are carried out serially,
one after the other in a strict order.

Table traversal
There are different ways to traverse through the objects of atable.

e Single-step traversal onekey at at time, usingfi rst/ 1, next/ 2,1 ast/ 1 andprev/ 2.

e Search with simple match patterns, using match/1/2/3, match delete/2 and
mat ch_obj ect/ 1/ 2/ 3.

e Search with more powerful match specifications, using select/1/2/3, select_count/2,
sel ect _del ete/ 2,sel ect _repl ace/ 2 andsel ect _reverse/ 1/ 2/ 3.

e Tableconversions,usingt ab2fil e/ 2/ 3andtab2list/ 1.
No table traversal will guarantee a consistent snapshot of the entire table if the table is also updated by concurrent
processes during the traversal. The result of each concurrently updated object may be seen (or not) depending on if it

has happened when the traversal visitsthat part of the table. The only way to guarantee afull consistent table snapshot
(if you really need that) isto disallow concurrent updates during the entire traversal.

Moreover, traversals not done in a safe way, on tables where keys are inserted or deleted during the traversal, may
yield the following undesired effects:

e Any key may be missed.
* Any key may be found more than once.
e Thetraversal may fail with badar g exception if keys are deleted.

A tabletraversal is safeif either

» thetableisof typeor dered_set.
* theentiretabletraversal is done within one ETS function call.
« functionsaf e_fi xt abl e/ 2 isused to keep the table fixated during the entire traversal.

Ericsson AB. All Rights Reserved.: STDLIB | 157

ets

Even though the access of a single object is always guaranteed to be atomic and isolated, each traversal through
a table to find the next key is not done with such guarantees. This is often not a problem, but may cause rare
subtle "unexpected" effects if a concurrent process inserts objects during a traversal. For example, consider one
process doing

ets:new(t, [ordered set, named table]),
ets:insert(t, {1}),
ets:insert(t, {2}),
ets:insert(t, {3}),

A concurrent call toet s: first(t), done by another process, may then in rare cases return 2 even though 2
has never existed in the table ordered as the first key. In the same way, a concurrent call toet s: next (t, 1)
may return 3 even though 3 never existed in the table ordered directly after 1.

Effects like this are improbable but possible. The probability will further be reduced (if not vanish) if table option
write_concurrency isnot enabled. This can aso only be a potential concern for or der ed_set wherethe
traversal order is defined.

Traversals using mat ch and sel ect functions may not need to scan the entire table depending on how the key is
specified. A match pattern with a fully bound key (without any match variables) will optimize the operation to a
single key lookup without any tabletraversal at all. For or der ed_set apartially bound key will limit the traversal
to only scan a subset of the table based on term order. A partially bound key is either alist or a tuple with a prefix
that is fully bound. Example:

1> T = ets:new(t,[ordered set]), ets:insert(T, {"555-1234", "John Smith"}).
true

2> %% Efficient search of all with area code 555

2> ets:match(T,{[$5,$5,$5,%- |'$1'1,'$2'}).

[["1234","John Smith"]]

Match Specifications

Some of the functions use a match specification, mat ch_spec. For a brief explanation, see sel ect/ 2. For a
detailed description, see section Match Specificationsin Erlang in ERTS User's Guide.

A match specifications with excessive nesting will causeasyst em | i m t error exception to be raised.

Data Types

access() = public | protected | private
continuation()

Opaque continuationused by sel ect/ 1, 3,sel ect _reverse/ 1, 3,match/ 1, 3,andmat ch_obj ect/ 1, 3.
match spec() = [{match pattern(), [term()], [term()]}]

A match specification, see above.

comp_match spec()

A compiled match specification.

158 | Ericsson AB. All Rights Reserved.: STDLIB

ets

match pattern() = atom() | tuple()

tab() = atom() | tid()

tid()

A table identifier, asreturned by new/ 2.

type() = set | ordered set | bag | duplicate bag

Exports

all() -> [Tab]
Types:
Tab = tab()

Returns a list of all tables at the node. Named tables are specified by their names, unnamed tables are specified by
their table identifiers.

There is no guarantee of consistency in the returned list. Tables created or deleted by other processes "during” the
ets: all () cal ether areor are not included in the list. Only tables created/deleted beforeet s: al | () iscalled
are guaranteed to be included/excluded.

delete(Tab) -> true
Types:

Tab = tab()
Deletesthe entire table Tab.

delete(Tab, Key) -> true

Types.
Tab = tab()
Key = term()

Deletes al objects with key Key from table Tab.

delete all objects(Tab) -> true
Types:
Tab = tab()
Delete all objectsin the ETS table Tab. The operation is guaranteed to be atomic and isolated.

delete object(Tab, Object) -> true
Types:

Tab = tab()

Object = tuple()

Delete the exact object Cbj ect from the ETS table, leaving objects with the same key but other differences (useful
for typebag). Inadupl i cat e_bag table, all instances of the object are del eted.

file2tab(Filename) -> {ok, Tab} | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 159

ets

Filename = file:name()
Tab = tab()
Reason = term()

Reads afile produced by t ab2fi | e/ 2 ort ab2f i | e/ 3 and creates the corresponding table Tab.
Equivalenttofi | e2t ab(Fi | enane, []).

file2tab(Filename, Options) -> {ok, Tab} | {error, Reason}

Types.
Filename = file:name()
Tab = tab()

Options = [Option]
Option = {verify, boolean()}
Reason = term()

Reads afile produced by t ab2fi | e/ 2 ort ab2f i | e/ 3 and creates the corresponding table Tab.

The only supported option is {verify, boolean()}. If verification is turned on (by specifying
{verify, true}), thefunction uses whatever information is present in the file to assert that the information is not
damaged. How this is done depends on which ext ended_i nf o waswrittenusingt ab2fi | e/ 3.

If no ext ended_i nf o ispresentinthefileand {verify, true} isspecified, the number of objects written is
compared to the size of the origina table when the dump was started. This can make verification fail if the table was
publ i ¢ and objects were added or removed while the table was dumped to file. To avoid this problem, either do
not verify files dumped while updated simultaneously or use option { ext ended_i nf o, [object_count]} to
t ab2fi | e/ 3, which extends the information in the file with the number of objects written.

If verification isturned on and the file was written with option { ext ended_i nf o, [md5sum }, reading thefile
is slower and consumes radically more CPU time than otherwise.

{verify, fal se} isthedefault.

first(Tab) -> Key | '$end of table'

Types.
Tab = tab()
Key = term()

Returns the first key Key in table Tab. For an or der ed_set table, the first key in Erlang term order is returned.
For other table types, the first key according to the internal order of the table is returned. If the table is empty,
'$end_of table' isreturned.

To find subsequent keysin the table, use next / 2.

foldl(Function, AccO, Tab) -> Accl

Types:
Function = fun((Element :: term(), AccIn) -> AccOut)
Tab = tab()

AccO = Accl = AccIn = AccOut = term()

AccO isreturned if thetableisempty. Thisfunctionissimilartol i st s: f ol dl / 3. Thetable elements are traversed
in an unspecified order, except for or der ed_set tables, where they are traversed first to last.

160 | Ericsson AB. All Rights Reserved.: STDLIB

ets

If Functi on inserts objects into the table, or another process inserts objects into the table, those objects can
(depending on key ordering) be included in the traversal.

foldr(Function, AccO, Tab) -> Accl

Types:
Function = fun((Element :: term(), AccIn) -> AccOut)
Tab = tab()

AccO = Accl = AccIn = AccOut = term()

AccO isreturned if thetableisempty. Thisfunctionissimilartol i st s: f ol dr/ 3. Thetable elementsare traversed
in an unspecified order, except for or der ed_set tables, where they are traversed last to first.

If Functi on inserts objects into the table, or another process inserts objects into the table, those objects can
(depending on key ordering) be included in the traversal.

from dets(Tab, DetsTab) -> true
Types:

Tab = tab()

DetsTab = dets:tab name()

Fills an already created ETS table with the objects in the already opened Dets table Det sTab. Existing objects in
the ETS table are kept unless overwritten.

If any of the tables does not exist or the Dets table is not open, abadar g exception is raised.

fun2ms (LiteralFun) -> MatchSpec
Types:
LiteralFun = function()
MatchSpec = match spec()
Pseudo function that by apar se_t r ansf or mtrandates Li t er al Fun typed as parameter in the function call to

amatch specification. With "literal" is meant that the fun must textually be written as the parameter of the function,
it cannot be held in avariable that in turn is passed to the function.

The parse transform is provided in the ns_transform module and the source must include file
nms_transform hrl in STDLIB for this pseudo function to work. Failing to include the hrl file in the source
results in a runtime error, not a compile time error. The include file is easiest included by adding line -
i nclude_lib("stdlib/include/ns_transformhrl"). tothesourcefile.

Thefunisvery restricted, it can take only asingle parameter (the object to match): asolevariable or atuple. It must use
thei s_ guard tests. Language constructs that have no representation in a match specification (i f , case, r ecei ve,
and so on) are not allowed.

Thereturn value is the resulting match specification.

Example:
1> ets:fun2ms(fun({M,N}) when N > 3 -> M end).
[{{"$1","$2"},[{'>","$2",3}],['$1'1}]

Variables from the environment can be imported, so that the following works:

Ericsson AB. All Rights Reserved.: STDLIB | 161

ets

2> X=3.

3

3> ets:fun2ms(fun({M,N}) when N > X -> M end).
[{{"$1","'$2"},[{'>","$2",{const,3}}],['$1"1}]

The imported variables are replaced by match specification const expressions, which is consistent with the static
scoping for Erlang funs. However, local or global function calls cannot be in the guard or body of the fun. Calls to
built-in match specification functionsis of course allowed:

4> ets:fun2ms(fun({M,N}) when N > X, my fun(M) -> M end).
Error: fun containing local Erlang function calls

('my fun' called in guard) cannot be translated into match spec
{error,transform error}

5> ets:fun2ms(fun({M,N}) when N > X, is atom(M) -> M end).
[{{'$1","'$2"},[{'>","$2",{const,3}},{is_atom, '$1'}],['$1"'1}]

As shown by the example, the function can be called from the shell also. The fun must be literally in the call when
used from the shell aswell.

If the par se_t ransf or mis not applied to a module that calls this pseudo function, the call fails in runtime
(with a badar g). The et s module exports a function with this name, but it is never to be called except
when using the function in the shell. If the par se_t ransf or mis properly applied by including header file
ns_transform hrl , compiled code never callsthe function, but the function call isreplaced by aliteral match
specification.

For moreinformation, seemns_t r ansf orn(3) .

give away(Tab, Pid, GiftData) -> true

Types:
Tab = tab()
Pid = pid()
GiftData = term()

Make process Pid the new owner of table Tab. If successful, message {'ETS-
TRANSFER , Tab, FronPi d, G ft Dat a} issent to the new owner.

The process Pi d must be alive, local, and not aready the owner of the table. The calling process must be the table
owner.

Notice that this function does not affect option hei r of thetable. A table owner can, for example, set hei r toitsalf,
give the table away, and then get it back if the receiver terminates.

i() -> ok
Displaysinformation about all ETS tables on aterminal.

i(Tab) -> ok
Types:
Tab = tab()

Browses table Tab on aterminal.

162 | Ericsson AB. All Rights Reserved.: STDLIB

ets

info(Tab) -> InfolList | undefined
Types.

Tab = tab()

InfolList = [InfoTuple]

InfoTuple =
{compressed, boolean()} |
{decentralized counters, boolean()} |
{heir, pid() | none} |
{id, tid()} |
{keypos, integer() >= 1} |
{memory, integer() >= 0} |
{name, atom()} |
{named table, boolean()} |
{node, node()} |
{owner, pid()} |
{protection, access()} |
{size, integer() >= 0} |

{type, type()} |
{write concurrency, boolean()} |
{read concurrency, boolean()}

Returns information about table Tab asalist of tuples. If Tab has the correct type for atable identifier, but does not
refer toan existing ETStable, undef i ned isreturned. If Tab isnot of the correct type, abadar g exceptionisraised.

{conpressed, bool ean()}
Indicatesif the table is compressed.
{decentralized_counters, bool ean()}
Indicates whether the table usesdecent ral i zed_count ers.
{heir, pid() | none}
The pid of the heir of thetable, or none if no heir is set.
{id, tid()}
The table identifier.
{keypos, integer() >= 1}
The key position.
{menory, integer() >=0
The number of words allocated to the table.
{nane, atom()}
The table name.
{named_t abl e, bool ean()}
Indicatesif the table is named.
{node, node()}

The node where the table is stored. Thisfield is no longer meaningful, as tables cannot be accessed from other
nodes.

Ericsson AB. All Rights Reserved.: STDLIB | 163

ets

{owner, pid()}
The pid of the owner of the table.
{protection, access()}
Thetable accessrights.
{size, integer() >=0
The number of objects inserted in the table.
{type, type()}
Thetable type.
{read_concurrency, bool ean()}
Indicates whether the table usesr ead_concur r ency or not.
{wite_concurrency, boolean()}
Indicates whether the table useswr i t e_concurr ency.

The execution time of this function is affected by the decentral i zed_count ers table option. The
execution time is much longer when the decent ral i zed_count er s option is set to t r ue than when the
decentral i zed_count er s optionissettof al se.

info(Tab, Item) -> Value | undefined
Types:
Tab = tab()

Item =
binary | compressed | decentralized counters | fixed | heir |
id | keypos | memory | name | named table | node | owner |
protection | safe fixed | safe fixed monotonic time | size |
stats | type | write concurrency | read concurrency

Value = term()

Returnsthe information associated with | t emfor table Tab, or returnsundef i ned if Tab doesnot refer an existing
ETStable. If Tab isnot of the correct type, or if | t emisnot one of the allowed values, abadar g exceptionisraised.

Inadditiontothe{ | t em Val ue} pairsdefined for i nf o/ 1, the following items are allowed:
e |lten¥binary, Value=Binlnfo

Bi nl nf o is a list containing miscellaneous information about binaries kept by the table. This It em can
be changed or removed without prior notice. In the current implementation Bi nl nf o is a list of tuples
{Bi naryl d, Bi narySi ze, Bi nar yRef cCount }.

« Itenrfixed, Val ue=bool ean()
Indicatesif the tableis fixed by any process.

164 | Ericsson AB. All Rights Reserved.: STDLIB

ets

Itemrsaf e_fixed| safe_fixed_nonotonic_tine, Value={FixationTine,Info}|false

If thetableisfixed using saf e_fi xt abl e/ 2, the cal returns atuple where Fi xat i onTi ne isthe last time
when the table changed from unfixed to fixed.

Theformat and value of Fi xat i onTi ne dependsonl|tem
safe_fixed

Fi xati onTi me corresponds to the result returned by er | ang: ti mest anp/ 0 at the time of fixation.
Notice that when the system uses single or multi time warp modes this can produce strange results, asthe use
of saf e_fi xed isnottimewarp safe. Timewarp safecodemust usesaf e_fi xed_nonotonic_ti ne
instead.

safe fixed nonotonic tine
Fi xati onTi me corresponds to the result returned by er | ang: nonot oni c_ti nme/ 0 at the time of
fixation. Theuse of saf e_f i xed_nonot oni c_t i me istime warp safe.

I nf o isapossibly empty lists of tuples { Pi d, Ref Count }, one tuple for every process the table is fixed by
now. Ref Count isthe value of the reference counter and it keeps track of how many times the table has been
fixed by the process.

Table fixations are not limited to saf e_f i xt abl e/ 2. Temporary fixations may a so be done by for example
traversing functions like sel ect and mat ch. Such table fixations are automatically released before the
corresponding functions returns, but they may be seen by a concurrent call toet s: i nf o(T, saf e_fi xed|
safe_fixed nonotonic_tine).
If the tableis not fixed at al, the call returnsf al se.

e Itenrstats, Val ue=tuple()

Returnsinternal statistics about tables on an internal format used by OTP test suites. Not for production use.

The execution time of this function is affected by the decentral i zed count er s table option when
the second argument of the function is si ze or nenory. The execution time is much longer when the
decentral i zed _count ers optionissettotr ue than whenthedecentral i zed_count er s option is
settof al se.

init table(Tab, InitFun) -> true
Types:
Tab = tab()
InitFun = fun((Arg) -> Res)
Arg = read | close
Res = end of input | {Objects :: [term()], InitFun} | term()
Replaces the existing objects of table Tab with objects created by calling the input function | ni t Fun, see below.

Thisfunction is provided for compatibility with thedet s module, it is not more efficient than filling atable by using
i nsert/2.

When called with argument r ead, the function | ni t Fun is assumed to return end_of _i nput when thereisno
moreinput, or { Obj ect's, Fun},where Obj ect s isalist of objects and Fun isanew input function. Any other
valueVal ueisreturnedasanerror{error, {init_fun, Val ue}}.Eachinputfunctioniscaledexactly once,
and if an error occur, the last function is called with argument cl ose, the reply of which isignored.

Ericsson AB. All Rights Reserved.: STDLIB | 165

ets

If the table type is set and more than one object exists with a given key, one of the objects is chosen. This is not
necessarily the last object with the given key in the sequence of objects returned by the input functions. This holds
also for duplicated objects stored in tables of type bag.

insert(Tab, ObjectOrObjects) -> true

Types:
Tab = tab()
ObjectOrObjects = tuple() | [tuple()]

Inserts the object or all of the objectsin list Obj ect Or Obj ect s into table Tab.

e |f thetable typeisset and the key of the inserted objects matches the key of any object in the table, the old
object isreplaced.

« If thetabletypeisor der ed_set and the key of the inserted object compar es equal to the key of any object
in the table, the old object is replaced.

« |f thelist contains more than one object with matching keys and the table typeisset , oneisinserted, which one
is not defined. The same holds for table type or der ed_set if the keys compare equal.

The entire operation is guaranteed to be atomic and isolated, even when alist of objectsisinserted.

insert new(Tab, ObjectOrObjects) -> boolean()
Types:
Tab = tab()
ObjectOrObjects = tuple() | [tuple()]
Same asi nsert/ 2 except that instead of overwriting objects with the same key (for set or or der ed_set) or
adding more objects with keys already existing in the table (for bag and dupl i cat e_bag), f al se isreturned.

If Obj ect Or Obj ect s isalist, the function checks every key before inserting anything. Nothing is inserted unless
all keys present in the list are absent from the table. Likei nser t/ 2, the entire operation is guaranteed to be atomic
and isolated.

is compiled ms(Term) -> boolean()
Types.
Term = term()

Checksif aterm represent avalid compiled match specification. A compiled match specificationsis only valid on the
Erlang node where it was compiled by calling mat ch_spec_conpi | e/ 1.

Before STDLIB 3.4 (OTP 20.0) compiled match specifications did not have an external representation. If passed
through bi nary to ternm(termto_bi nary(CVS)) or sent to another node and back, the result was
always an empty binary <<>>.

After STDLIB 34 (OTP 20.0) compiled match specifications have an external representation
as a node specific reference to the origina compiled match specification. If passed through
binary to tern(termto_bi nary(CVS)) or sentto another node and back, the result may or may not
be avalid compiled match specification depending on if the original compiled match specification was still alive.

last(Tab) -> Key | '$end of table'
Types:

166 | Ericsson AB. All Rights Reserved.: STDLIB

ets

Tab
Key

tab ()
term()

Returnsthe last key Key according to Erlang term order in table Tab of type or der ed_set . For other table types,
the function is synonymoustofi r st/ 1. If thetableisempty, ' $end_of _t abl e' isreturned.

To find preceding keysin the table, use pr ev/ 2.

lookup(Tab, Key) -> [Object]

Types:
Tab = tab()
Key = term()

Object = tuple()
Returns alist of all objects with key Key intable Tab.

« For tables of typeset , bag, or dupl i cat e_bag, an object is returned only if the specified key matches the
key of the object in the table.

« For tables of type or der ed_set , an object is returned if the specified key compares equal to the key of an
object in the table.

The difference is the same as between =: = and ==.

Asan example, onecaninsert an object withi nt eger () 1 asakeyinanor der ed_set and get the object returned
asaresult of doing al ookup/ 2 withf | oat () 1. 0 asthekey to search for.

For tables of type set or or der ed_set , the function returns either the empty list or alist with one element, as
there cannot be more than one object with the same key. For tables of type bag or dupl i cat e_bag, the function
returns alist of arbitrary length.

Notice that the time order of object insertions is preserved; the first object inserted with the specified key is the first
in the resulting list, and so on.

Insert and lookup timesin tables of type set , bag, and dupl i cat e_bag are constant, regardless of the table size.
For theor der ed_set datatype, timeis proportiona to the (binary) logarithm of the number of objects.

lookup element(Tab, Key, Pos) -> Elem

Types.
Tab = tab()
Key = term()
Pos = integer() >=1

Elem = term() | [term()]
For atable Tab of typeset or or der ed_set , the function returns the Pos:th element of the object with key Key.

For tables of type bag or dupl i cat e_bag, the functions returns a list with the Pos:th element of every object
with key Key.

If no object with key Key exists, the function exits with reason badar g.

The difference between set , bag, anddupl i cat e_bag ononehand, and or der ed_set onthe other, regarding
thefact that or der ed_set view keys as equal when they compar e equal whereas the other table types regard them
equal only when they match, holdsfor | ookup_el enent / 3.

match(Continuation) -> {[Match], Continuation} | '$end of table'
Types.

Ericsson AB. All Rights Reserved.: STDLIB | 167

ets

Match = [term()]
Continuation = continuation()

Continues amatch started with mat ch/ 3. The next chunk of the size specified in theinitial mat ch/ 3 cal isreturned
together with anew Cont i nuat i on, which can be used in subsequent calls to this function.

When there are no more objectsin thetable, ' $end_of _t abl e' isreturned.

match(Tab, Pattern) -> [Match]
Types:
Tab = tab()
Pattern = match pattern()
Match = [term()]

Matches the objectsin table Tab against pattern Pat t er n.
A pattern isaterm that can contain:
e Bound parts (Erlang terms)

e ' ' that matches any Erlang term

* Patternvariables' $N' , where N=0,1,...

The function returns alist with one element for each matching object, where each element is an ordered list of pattern
variable bindings, for example:

6> ets:match(T, '$1'). % Matches every object in table
[[{rufsen,dog,7}], [{brunte,horse,5}], [{ludde,dog,5}]]
7> ets:match(T, {' ',dog,'$1'}).

[[71,[511]

8> ets:match(T, {' ',cow,'$1'}).

[]

If the key is specified in the pattern, the match is very efficient. If the key is not specified, that is, if it isavariable or
an underscore, the entire table must be searched. The search time can be substantial if the table isvery large.
For tables of typeor der ed_set , theresultisinthe same order asinaf i r st /next traversal.

match(Tab, Pattern, Limit) ->
{[Match], Continuation} | '$end of table'

Types.
Tab = tab()
Pattern = match pattern()
Limit = integer() >=1
Match = [term()]
Continuation = continuation()
Workslike mat ch/ 2, but returns only alimited (Li m t) number of matching objects. Term Cont i nuat i on can

then be used in subsequent callsto mat ch/ 1 to get the next chunk of matching objects. Thisis a space-efficient way
to work on objectsin atable, which is faster than traversing the table object by object usingf i r st/ 1 and next / 2.

If thetableisempty, ' $end_of _t abl e' isreturned.
Usesaf e_fi xt abl e/ 2 to guarantee safe traversal for subsequent callsto mat ch/ 1.

168 | Ericsson AB. All Rights Reserved.: STDLIB

ets

match delete(Tab, Pattern) -> true
Types.

Tab = tab()

Pattern = match pattern()

Deletes all objects that match pattern Pat t er n from table Tab. For adescription of patterns, seemat ch/ 2.

match object(Continuation) ->
{[Object], Continuation} | '$end of table'

Types:
Object = tuple()
Continuation = continuation()
Continues a match started with mat ch_obj ect/ 3. The next chunk of the size specified in the initial

mat ch_obj ect / 3 cal is returned together with a new Cont i nuat i on, which can be used in subsequent calls
to this function.

When there are no more objectsin thetable, ' $end_of _t abl e' isreturned.

match object(Tab, Pattern) -> [Object]
Types.
Tab = tab()
Pattern = match pattern()
Object = tuple()
Matchesthe objectsin table Tab against pattern Pat t er n. For adescription of patterns, scermat ch/ 2. Thefunction
returns alist of al objects that match the pattern.

If the key is specified in the pattern, the match is very efficient. If the key is not specified, that is, if it isavariable or
an underscore, the entire table must be searched. The search time can be substantial if the tableis very large.

For tables of typeor der ed_set , theresultisinthe same order asinafi r st /next traversal.

match object(Tab, Pattern, Limit) ->
{[Object], Continuation} | '$end of table'

Types:

Tab = tab()

Pattern = match pattern()

Limit = integer() >=1

Object = tuple()

Continuation = continuation()
Works like mat ch_obj ect/ 2, but only returns a limited (Li mi t) number of matching objects. Term
Cont i nuati on can then be used in subsequent calls to mat ch_obj ect/ 1 to get the next chunk of matching

objects. Thisis a space-efficient way to work on objectsin atable, which is faster than traversing the table object by
objectusingfirst/1andnext/ 2

If thetableisempty, ' $end_of _t abl e' isreturned.
Usesaf e_fi xt abl e/ 2 to guarantee safe traversal for subsequent callsto mat ch_obj ect / 1.

match spec compile(MatchSpec) -> CompiledMatchSpec
Types.

Ericsson AB. All Rights Reserved.: STDLIB | 169

ets

MatchSpec = match spec()
CompiledMatchSpec = comp _match spec()

Transforms a match specification into an internal representation that can be used in subsequent calls to
mat ch_spec_run/ 2. The internal representation is opaque. To check the validity of a compiled match
specification, usei s_conpi | ed_ns/ 1.

If term Mat chSpec does not represent avalid match specification, abadar g exception israised.

This function has limited use in normal code. It is used by the det s module to perform the det s: sel ect ()
operations.

match spec run(List, CompiledMatchSpec) -> list()
Types:

List = [term()]

CompiledMatchSpec = comp _match spec()

Executes the matching specified in a compiled match specification on alist of terms. Term Conpi | edVat chSpec
is to be the result of a call to mat ch_spec_conpi | e/ 1 and is hence the interna representation of the match
specification one wantsto use.

The matching is executed on each element in Li st and the function returns alist containing all results. If an element
inLi st does not match, nothing is returned for that element. The length of the result list is therefore equal or less
than the length of parameter Li st .

Example:
The following two calls give the same result (but certainly not the same execution time):

Table = ets:new...

MatchSpec = ...

% The following call...

ets:match _spec run(ets:tab2list(Table),
ets:match_spec_compile(MatchSpec)),

% ...gives the same result as the more common (and more efficient)

ets:select(Table, MatchSpec),

This function has limited use in normal code. It is used by the det s module to perform the det s: sel ect ()
operations and by Mnesia during transactions.

member(Tab, Key) -> boolean()

Types:
Tab = tab()
Key = term()

Works like | ookup/ 2, but does not return the objects. Returnst r ue if one or more elements in the table has key
Key, otherwisef al se.

new(Name, Options) -> tid() | atom()
Types.

170 | Ericsson AB. All Rights Reserved.: STDLIB

ets

Name = atom()

Options = [Option]

Option =
Type | Access | named table |
{keypos, Pos} |
{heir, Pid :: pid(), HeirData} |
{heir, none} |
Tweaks

Type = type()

Access = access()

Tweaks =
{write concurrency, boolean()} |
{read concurrency, boolean()} |
{decentralized counters, boolean()} |
compressed

Pos = integer() >=1
HeirData = term()

Creates a new table and returns a table identifier that can be used in subsegquent operations. The table identifier can be
sent to other processes so that a table can be shared between different processes within a node.

Parameter Opt i ons isalist of options that specifies table type, access rights, key position, and whether the table
is named. Default values are used for omitted options. This means that not specifying any options ([]) is the same
as specifying [set, protected, {keypos, 1}, {heir,none}, {wite_concurrency,false},
{read_concurrency, fal se}, {decentralized counters,false}].

set
Thetableisaset table: one key, one object, no order among objects. Thisis the default table type.
ordered_set

Thetableisaor der ed_set table: onekey, oneobject, ordered in Erlang term order, which isthe order implied
by the < and > operators. Tables of thistype have a somewhat different behavior in some situations than tables of
other types. Most notably, the or der ed_set tablesregard keys as equal when they compar e equal, not only
when they match. This meansthat to an or der ed_set table,i nt eger () 1 andfl oat () 1. O areregarded
asequal. This also meansthat the key used to lookup an element not necessarily matchesthe key in the returned
elements, if f | oat () 'sandi nt eger () 'sare mixed in keys of atable.

bag
Thetableisabag table, which can have many objects, but only one instance of each object, per key.
dupl i cat e_bag

The tableisadupl i cat e_bag table, which can have many objects, including multiple copies of the same
object, per key.

public
Any process can read or write to the table.
pr ot ect ed

The owner process can read and write to the table. Other processes can only read the table. This is the default
setting for the accessrights.

private
Only the owner process can read or write to the table.

Ericsson AB. All Rights Reserved.: STDLIB | 171

ets

naned_t abl e

If thisoptionis present, thetableisregistered under its Narre which can then be used instead of thetableidentifier
in subsequent operations.

The function will also return the Nane instead of the table identifier. To get the table identifier of a named table,
usewher ei s/ 1.

{keypos, Pos}

Specifies which element in the stored tuples to use as key. By default, it is the first element, that is, Pos=1.
However, thisis not always appropriate. In particular, we do not want the first element to be the key if we want
to store Erlang records in atable.

Notice that any tuple stored in the table must have at least Pos humber of elements.
{heir,Pid, HeirData} | {heir, none}

Set a process as heir. The her inherits the table if the owner terminates. Message {' ETS-
TRANSFER , ti d(), FronPi d, Hei r Dat a} is sent to the heir when that occurs. The heir must be a local
process. Default heir isnone, which destroys the table when the owner terminates.

{write_concurrency, bool ean()}

Performance tuning. Defaults to f al se, in which case an operation that mutates (writes to) the table obtains
exclusive access, blocking any concurrent access of the same table until finished. If set to t r ue, the table is
optimized to concurrent write access. Different objects of the same table can be mutated (and read) by concurrent
processes. This is achieved to some degree at the expense of memory consumption and the performance of
sequential access and concurrent reading.

The wite _concurrency option can be combined with the options read_concurrency
and decentralized counters. You typicaly want to combine write concurrency with
r ead_concur r ency when large concurrent read bursts and large concurrent write bursts are common; for
more information, see option r ead_concurrency. The decentral i zed_count er s option is turned
on by default for tables of type or der ed_set with the wri t e_concurrency option enabled, and the
decentral i zed_count er s option isturned off by default for all other table types. For more information,
see the documentation for thedecent ral i zed_count er s option.

Notice that this option does not change any guarantees about atomicity and isolation. Functions that makes such
promises over many objects (likei nsert / 2) gain less (or nothing) from this option.

The memory consumption inflicted by bothwr i t e_concurrency andr ead_concur r ency isaconstant
overhead per tablefor set ,bag anddupl i cat e_bag. For or der ed_set thememory overhead dependson
the number of inserted objects and the amount of actual detected concurrency in runtime. The memory overhead
can be especially large when both options are combined.

Prior to stdlib-3.7 (OTP-22.0) wr i t e_concur r ency had no effect on or der ed_set .

{read_concurrency, bool ean()}

Performancetuning. Defaultstof al se. Whensettot r ue, thetableisoptimized for concurrent read operations.
When this option is enabled read operations become much cheaper; especially on systems with multiple physical
processors. However, switching between read and write operations becomes more expensive.

You typicaly want to enable this option when concurrent read operations are much more frequent than write
operations, or when concurrent reads and writes comes in large read and write bursts (that is, many reads not
interrupted by writes, and many writes not interrupted by reads).

172 | Ericsson AB. All Rights Reserved.: STDLIB

ets

You typically do not want to enable this option when the common access pattern is a few read operations
interleaved with a few write operations repeatedly. In this case, you would get a performance degradation by
enabling this option.

Option r ead_concur r ency can be combined with option wri t e_concur r ency. You typicaly want to
combine these when large concurrent read bursts and large concurrent write bursts are common.
{decentralized_counters, bool ean()}

Performance tuning. Defaults to t r ue for tables of type or der ed_set withthewrite_concurrency
option enabled, and defaults to false for al other table types. This option has no effect if the
write concurrency optionissettof al se.

When this option isset to t r ue, the table is optimized for frequent concurrent calls to operations that modify
the tables size and/or its memory consumption (e.g., i nsert/ 2 and del et e/ 2). The drawback is that calls
toinfo/1 andinfo/2 with si ze or nenory as the second argument can get much slower when the
decentral i zed_count er s optionisturned on.

When this option is enabled the counters for the table size and memory consumption are distributed over several
cache lines and the scheduling threads are mapped to one of those cachelines. Theer | option +dcg can be used
to control the number of cache lines that the counters are distributed over.

conpr essed

If this option is present, the table data is stored in a more compact format to consume less memory. However, it
will make table operations slower. Especially operations that need to inspect entire objects, such asmat ch and
sel ect , get much slower. The key element is not compressed.

next(Tab, Keyl) -> Key2 | '$end of table'’
Types:
Tab = tab()
Keyl = Key2 = term()
Returnsthe next key Key 2, following key Key 1 in table Tab. For table type or der ed_set , the next key in Erlang

term order isreturned. For other table types, the next key according to the internal order of the table is returned. If no
next key exists, ' $end_of _t abl e' isreturned.

To find thefirst key in the table, usefi rst/ 1.

Unlessatableof typeset , bag, ordupl i cat e_bag isfixatedusingsaf e_fi xt abl e/ 2, acall tonext / 2 will
fail if Key 1 nolonger existsinthetable. For tabletypeor der ed_set , thefunction alwaysreturnsthe next key after
Key1 interm order, regardless whether Key 1 ever existed in thetable.

prev(Tab, Keyl) -> Key2 | '$end of table'
Types:
Tab = tab()
Keyl = Key2 = term()
Returns the previous key Key2, preceding key Keyl according to Erlang term order in table Tab of type

ordered_set. For other table types, the function is synonymous to next/ 2. If no previous key exists,
' $end_of _t abl e’ isreturned.

Tofindthelast key inan or der ed_set table, usel ast/ 1.

rename(Tab, Name) -> Name
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 173

ets

Tab = tab()
Name = atom()

Renames the named table Tab to the new name Nane. Afterwards, the old name cannot be used to access the table.
Renaming an unnamed table has no effect.

repair continuation(Continuation, MatchSpec) -> Continuation
Types:

Continuation = continuation()

MatchSpec = match spec()

Restoresan opague continuation returned by sel ect / 3 orsel ect / 1 if the continuation has passed through external
term format (been sent between nodes or stored on disk).

The reason for this function is that continuation terms contain compiled match specifications and may therefore
be invalidated if converted to externa term format. Given that the original match specification is kept intact, the
continuation can be restored, meaning it can once again be used in subsequent sel ect/ 1 calls even though it has
been stored on disk or on another node.

Examples:

The following sequence of calls may fail:

T=ets:new(x,[]),

MS = ets:fun2ms(fun({N, }=A) when (N rem 10) =:= 0 -> A end),
{ ,C} = ets:select(T, MS, 10),

MaybeBroken = binary to term(term to binary(C)),
ets:select(MaybeBroken).

The following sequence works, as the call to repai r_conti nuati on/ 2 reestablishes the MaybeBr oken
continuation.

T=ets:new(x,[]),

MS = ets:fun2ms(fun({N, }=A) when (N rem 10) =:= 0 -> A end),
{ ,C} = ets:select(T,MS,10),

MaybeBroken = binary to term(term to binary(C)),
ets:select(ets:repair continuation(MaybeBroken,MS)).

This function is rarely needed in application code. It is used by Mnesia to provide distributed sel ect/ 3 and
sel ect/ 1 sequences. A normal application would either use Mnesia or keep the continuation from being
converted to external format.

The actual behavior of compiled match specifications when recreated from external format has changed and may
change in future releases, but this interface remains for backward compatibility. Seei s_conpi | ed_ns/ 1.

safe fixtable(Tab, Fix) -> true

Types.
Tab = tab()
Fix = boolean()

Fixes atable of type set , bag, or dupl i cat e_bag for safe traversal usingfirst/ 1 & next/ 2, match/ 3 &
mat ch/ 1, mat ch_obj ect/ 3 & natch_obj ect/ 1,orsel ect/ 3 & sel ect/ 1.

174 | Ericsson AB. All Rights Reserved.: STDLIB

ets

A processfixesatableby callingsaf e_fi xt abl e(Tab, true).Thetableremainsfixeduntil the processreleases
itby callingsaf e_fi xtabl e(Tab, fal se), oruntil the process terminates.

If many processes fix atable, the table remains fixed until all processes have released it (or terminated). A reference
counter is kept on a per process basis, and N consecutive fixes requires N releases to release the table.

When atableisfixed, asequenceof fi r st/ 1 and next / 2 calls are guaranteed to succeed even if keys are removed
during thetraversal. The keysfor objectsinserted or deleted during atraversal may or may not bereturned by next / 2
depending on the ordering of keys within the table and if the key exists at thetime next / 2 is called.

Example:

clean all with value(Tab,X) ->
safe fixtable(Tab,true),
clean all with value(Tab,X,ets:first(Tab)),
safe fixtable(Tab, false).

clean all with value(Tab,X, '$end of table') ->
true;
clean_all with value(Tab,X,Key) ->
case ets:lookup(Tab,Key) of
[{Key,X}] ->
ets:delete(Tab,Key);
->
T true
end,
clean all with value(Tab,X,ets:next(Tab,Key)).

Notice that deleted objects are not freed from a fixed table until it has been released. If a process fixes a table but
never releases it, the memory used by the deleted objects is never freed. The performance of operations on the table
also degrades significantly.

To retrieve information about which processes have fixed which tables, use info(Tab,
saf e _fixed nonotonic_tine).A system with many processes fixing tables can need a monitor that sends
alarms when tables have been fixed for too long.

Noticethat saf e_fi xt abl e/ 2 isnot necessary for table type or der ed_set and for traversals done by asingle
ETSfunction cal, likesel ect/ 2.

select(Continuation) -> {[Match], Continuation} | '$end of table'
Types.

Match = term()

Continuation = continuation()

Continues a match started with sel ect / 3. The next chunk of the size specified in the initial sel ect/ 3 call is
returned together with anew Cont i nuat i on, which can be used in subsequent calls to this function.

When there are no more objectsin thetable, ' $end_of _t abl e’ isreturned.

select(Tab, MatchSpec) -> [Match]
Types:

Tab = tab()

MatchSpec = match spec()

Match = term()

Matches the objects in table Tab using a match specification. This is a more general call than nat ch/ 2 and
mat ch_obj ect / 2 calls. Inits simplest form, the match specification is as follows:

Ericsson AB. All Rights Reserved.: STDLIB | 175

ets

MatchSpec = [MatchFunction]

MatchFunction = {MatchHead, [Guard], [Result]}
MatchHead = "Pattern as in ets:match"

Guard = {"Guardtest name", ...}

Result = "Term construct"

This means that the match specification isawaysalist of one or more tuples (of arity 3). Thefirst element of thetuple
is to be a pattern as described in mat ch/ 2. The second element of the tuple is to be alist of O or more guard tests
(described below). Thethird element of the tuple isto be alist containing a description of the valueto return. In almost
all normal cases, the list contains exactly one term that fully describes the value to return for each object.

Thereturn valueis constructed using the "match variables' boundin Mat chHead or using the special match variables
'$ ' (thewholematchingobject) and' $$' (all match variablesinalist), sothat thefollowing mat ch/ 2 expression:

ets:match(Tab,{'$1','$2"','$3'})

is exactly equivalent to:
ets:select(Tab, [{{'$1"',"'$2",'$3"},[1,["'$$"'1}])

And that the following mat ch_obj ect / 2 call:
ets:match_object(Tab,{'$1','$2"','$1'})

is exactly equivalent to
ets:select(Tab, [{{'$1',"$2","'$1'},[1,['$_"1}])

Composite terms can be constructed in the Resul t part either by simply writing alist, so that the following code:
ets:select(Tab, [{{'$1','$2","'$3"'},[1,['$$'1}]1)

gives the same output as:
ets:select(Tab, [{{'$1"',"'$2",'$3"},[],[['$1","$2","'$3"]1]1}])

That is, all the bound variables in the match head as alist. If tuples are to be constructed, one has to write a tuple of
arity 1 where the single element in the tuple is the tuple one wants to construct (as an ordinary tuple can be mistaken
for aGuar d).

Therefore the following call:

ets:select(Tab, [{{'$1",'$2","'$1'},[],['$_"1}1)

gives the same output as:

ets:select(Tab, [{{'$1","'$2","$1"},[],[{{"$1","$2","$3"}}]1}])
This syntax is equivalent to the syntax used in the trace patterns (see the dbg(3)) module in Runtime_Tools.

The Guar dsare constructed as tuples, where the first element is the test name and the remaining elements are the test
parameters. To check for a specific type (say alist) of the element bound to the match variable' $1' , onewould write
thetestas{i s _list, '$1'}.Ifthetestfails, the object inthetabledoesnot match and thenext Mat chFunct i on
(if any) istried. Most guard tests present in Erlang can be used, but only the new versions prefixed i s_ are allowed
(is_float,is_atomandsoon).

The Guar d section can also contain logic and arithmetic operations, which are written with the same syntax as the
guard tests (prefix notation), so that the following guard test written in Erlang:

is _integer(X), is _integer(Y), X + Y < 4711

176 | Ericsson AB. All Rights Reserved.: STDLIB

ets

isexpressed asfollows (X replaced with' $1' and Y with' $2'):
[{is_integer, '$1'}, {is integer, '$2'}, {'<', {'+', '$1', '$2'}, 4711}]

For tables of type or der ed_set , objects are visited in the same order asinaf i r st /next traversal. This means
that the match specification is executed against objects with keysin thefi r st /next order and the corresponding
result list isin the order of that execution.

select(Tab, MatchSpec, Limit) ->
{[Match], Continuation} | '$end of table'

Types:

Tab = tab()

MatchSpec = match spec()

Limit = integer() >=1

Match = term()

Continuation = continuation()
Workslikesel ect / 2, but only returnsalimited (Li m t) number of matching objects. Term Cont i nuat i on can
then be used in subsequent callsto sel ect / 1 to get the next chunk of matching objects. This is a space-efficient

way to work on objectsin atable, which is still faster than traversing the table object by object usingfi rst/ 1 and
next/ 2.

If thetableisempty, ' $end_of _t abl e' isreturned.
Usesaf e_fi xt abl e/ 2 to guarantee safe traversal for subsequent callstosel ect / 1.

select count(Tab, MatchSpec) -> NumMatched
Types:
Tab = tab()
MatchSpec = match spec()
NumMatched = integer() >= 0
Matches the objects in table Tab using a match specification. If the match specification returnst r ue for an object,

that object considered a match and is counted. For any other result from the match specification the object is not
considered a match and is therefore not counted.

Thisfunction can be described asasel ect _del et e/ 2 function that does not delete any elements, but only counts
them.

The function returns the number of objects matched.

select delete(Tab, MatchSpec) -> NumDeleted
Types.

Tab = tab()

MatchSpec = match spec()

NumDeleted = integer() >= 0

Matches the objects in table Tab using a match specification. If the match specification returnst r ue for an object,
that object is removed from the table. For any other result from the match specification the object isretained. Thisis
amore genera call thanthennat ch_del et e/ 2 call.

The function returns the number of objects deleted from the table.

Ericsson AB. All Rights Reserved.: STDLIB | 177

ets

The match specification has to return the atom t r ue if the object is to be deleted. No other return value gets the
object deleted. So one cannot use the same match specification for looking up elements as for deleting them.

select replace(Tab, MatchSpec) -> NumReplaced
Types:

Tab = tab()

MatchSpec = match spec()

NumReplaced = integer() >= 0

Matches the objects in the table Tab using a match specification. For each matched object, the existing object is
replaced with the match specification result.

The match-and-replace operation for each individual object is guaranteed to be atomic and isolated. The
sel ect _repl ace tabletraversal asawhole, like al other select functions, does not give such guarantees.

The match specifiction must be guaranteed to retain the key of any matched object. If not, sel ect _r epl ace will
fail with badar g without updating any objects.

For the moment, due to performance and semantic constraints, tables of type bag are not yet supported.
The function returns the total number of replaced objects.
Example

For al 2-tupleswith alist in second position, add atom* mar ker ' firstin thelist:

1> T = ets:new(x,[]), ets:insert(T, {key, [1, 2, 31}).

true

2> MS = ets:fun2ms(fun({K, L}) when is list(L) -> {K, [marker | L]} end).
[{{'$1',"$2"}, [{is_list, '$2'}]1,[{{'$1', [marker|'$2'1}}1}]

3> ets:select replace(T, MS).

1

4> ets:tab2list(T).

[{key, [marker,1,2,3]1}]

A generic single object compare-and-swap operation:

[0ld] = ets:lookup(T, Key),
New = update object(0ld),
Success = (1 =:= ets:select replace(T, [{Old, [], [{const, New}I1}1)),

select reverse(Continuation) ->
{[Match], Continuation} | '$end of table'

Types.
Continuation = continuation()
Match = term()

Continues amatch started with sel ect _rever se/ 3. For tables of type or der ed_set , thetraversal of the table
continues to objects with keys earlier in the Erlang term order. The returned list also contains objects with keys in
reverse order. For all other table types, the behavior is exactly that of sel ect/ 1.

178 | Ericsson AB. All Rights Reserved.: STDLIB

ets

Example:

1> T = ets:new(x, [ordered set]).
2> [ets:insert(T,{N}) || N <- lists:seq(1,10)].

é;.{RO,CO} = ets:select reverse(T,[{" ',[1,['$ '1}1,4).
4> RO.

[{10},{9},{8},{7}]

5> {R1,C1l} = ets:select reverse(CO).

é;.Rl.

[{6},{5},{4},{3}]

7> {R2,C2} = ets:select reverse(Cl).

8> R2.

[{2},{1}]

9> '$end of table' = ets:select reverse((C2).

select reverse(Tab, MatchSpec) -> [Match]
Types:

Tab = tab()

MatchSpec = match spec()

Match = term()

Works like sel ect / 2, but returns the list in reverse order for table type or der ed_set . For all other table types,
thereturn valueisidentical to that of sel ect / 2.

select reverse(Tab, MatchSpec, Limit) ->
{[Match], Continuation} | '$end of table'

Types.

Tab = tab()

MatchSpec = match spec()

Limit = integer() >=1

Match = term()

Continuation = continuation()

Workslikesel ect/ 3, but for tabletypeor der ed_set traversingisdone starting at the last object in Erlang term
order and movesto thefirst. For al other table types, the return value isidentical to that of sel ect / 3.

Noticethat thisis not equivalent to reversing theresult list of asel ect / 3 call, astheresult list is not only reversed,
but also containsthe last Li mi t matching objects in the table, not the first.

setopts(Tab, Opts) -> true
Types:
Tab = tab()
Opts = Opt | [Opt]
Opt = {heir, pid(), HeirData} | {heir, none}
HeirData = term()

Sets table options. The only allowed option to be set after the table has been created is hei r . The calling process
must be the table owner.

Ericsson AB. All Rights Reserved.: STDLIB | 179

ets

slot(Tab, I) -> [Object] | '$end of table'
Types.
Tab = tab()
I = integer() >= 0
Object = tuple()
This function is mostly for debugging purposes, Normally f i r st /next or | ast /pr ev areto be used instead.
Returns all objectsin dot | of table Tab. A table can be traversed by repeatedly calling the function, starting with

thefirst dot | =0 and ending when' $end_of _t abl e' isreturned. If argument | isout of range, the function fails
with reason badar g.

Unless atable of typeset , bag, or dupl i cat e_bag isprotected using saf e_fi xt abl e/ 2, atraversal can fall
if concurrent updates are madeto thetable. For tabletypeor der ed_set , thefunction returnsalist containing object
| in Erlang term order.

tab2file(Tab, Filename) -> ok | {error, Reason}
Types:

Tab = tab()

Filename = file:name()

Reason = term()

Dumpstable Tab tofileFi | enane.
Equivalenttot ab2fil e(Tab, Filenane,[])

tab2file(Tab, Filename, Options) -> ok | {error, Reason}
Types:

Tab = tab()

Filename = file:name()

Options = [Option]

Option = {extended info, [ExtInfo]} | {sync, boolean()}

ExtInfo = md5sum | object count

Reason = term()

Dumpstable Tab tofileFi | enane.

When dumping the table, some information about the table is dumped to a header at the beginning of the dump. This
information contains dataabout the table type, name, protection, size, version, and if itisanamed table. It also contains
notes about what extended information is added to the file, which can be a count of the objects in the file or a MD5
sum of the header and recordsin thefile.

The size field in the header might not correspond to the number of recordsin the file if the table is public and records
are added or removed from the table during dumping. Public tables updated during dump, and that one wants to verify
when reading, needs at |east one field of extended information for the read verification process to be reliable later.

Option ext ended_i nf o specifies what extrainformation is written to the table dump:
obj ect _count

The number of objects written to the file is noted in the file footer, so file truncation can be verified even if the
file was updated during dump.

180 | Ericsson AB. All Rights Reserved.: STDLIB

ets

nd5sum

The header and objectsin thefile are checksummed using the built-in MD5 functions. The MD5 sum of all objects
is written in the file footer, so that verification while reading detects the slightest bitflip in the file data. Using
this costs a fair anount of CPU time.

Whenever option ext ended_i nf o isused, it resultsin afile not readable by versions of ETS beforethat in STDLIB
1151

If option sync issettot r ue, it ensuresthat the content of the file is written to the disk beforet ab2f i | e returns.
Defaultsto{sync, fal se}.

tab2list(Tab) -> [Object]
Types:

Tab = tab()

Object = tuple()
Returns alist of all objectsin table Tab.

tabfile info(Filename) -> {ok, TableInfo} | {error, Reason}
Types:

Filename = file:name()

TableInfo = [InfoIltem]

Infoltem =
{name, atom()} |

{type, Type} |

{protection, Protection} |

{named table, boolean()} |

{keypos, integer() >= 0} |

{size, integer() >= 0} |

{extended info, [ExtInfol} |

{version,

{Major :: integer() >= 0, Minor :: integer() >= 0}}
ExtInfo = md5sum | object count
Type = bag | duplicate bag | ordered set | set
Protection = private | protected | public

Reason = term()
Returns information about the table dumped to fileby t ab2fi |l e/ 2 ort ab2fi |l e/ 3.
The following items are returned:
nane

The name of the dumped table. If the table was a hamed table, a table with the same name cannot exist when
the table is loaded from file with f i | e2t ab/ 2. If the table is not saved as a named table, this field has no
significance when loading the table from file.

type
The ETStype of the dumped table (that is, set , bag, dupl i cat e_bag, oror der ed_set). Thistypeisused
when loading the table again.

Ericsson AB. All Rights Reserved.: STDLIB | 181

ets

protection

The protection of the dumped table (that is, pri vat e, pr ot ect ed, or publ i c). A tableloaded from the file
gets the same protection.

nanmed_t abl e

t r ue if the table was a named table when dumped to file, otherwise f al se. Notice that when a named tableis
loaded from afile, there cannot exist atable in the system with the same name.

keypos
Thekeypos of the table dumped to file, which is used when loading the table again.
si ze
The number of abjects in the table when the table dump to file started. For a publ i ¢ table, this number does

not need to correspond to the number of objects saved to the file, as objects can have been added or deleted by
another process during table dump.

extended_info

The extended information written in the file footer to allow stronger verification during table loading from file,
asspecifiedtot ab2f i | e/ 3. Notice that this function only tells which information is present, not the valuesin
thefile footer. The valueisalist containing one or more of the atoms obj ect _count and nd5sum

versi on

A tuple{ Maj or, M nor} containing the major and minor version of the file format for ETS table dumps. This
version field was added beginning with STDLIB 1.5.1. Files dumped with older versions return { 0, 0} in this
field.

An error isreturned if the fileisinaccessible, badly damaged, or not produced witht ab2fi |l e/ 2 ort ab2fil e/ 3.

table(Tab) -> QueryHandle
table(Tab, Options) -> QueryHandle
Types.
Tab = tab()
QueryHandle = glc:query handle()
Options = [Option] | Option
Option = {n objects, NObjects} | {traverse, TraverseMethod}
NObjects = default | integer() >=1

TraverseMethod =
first next | last prev | select |
{select, MatchSpec :: match spec()}

Returns a Query List Comprehension (QLC) query handle. The gl ¢ module provides aquery language aimed mainly
at Mnesia, but ETS tables, Detstables, and lists are also recognized by QL C as sources of data. Callingt abl e/ 1, 2
is the means to make the ETS table Tab usableto QLC.

When there are only simple restrictions on the key position, QLC uses| ookup/ 2 to look up the keys. When that is
not possible, the whole table istraversed. Optiont r aver se determines how thisis done:

first_next

Thetableistraversed onekey at atimeby callingfi rst/ 1 and next/ 2.
| ast_prev

Thetableistraversed onekey at atimeby callingl ast/ 1 and pr ev/ 2.

182 | Ericsson AB. All Rights Reserved.: STDLIB

ets

sel ect

The table is traversed by calling sel ect/ 3 and sel ect/ 1. Option n_obj ect s determines the number
of objects returned (the third argument of sel ect/ 3); the default is to return 100 objects at a time. The
match specification (the second argument of sel ect/ 3) is assembled by QLC: simple filters are translated
into equivalent match specifications while more complicated filters must be applied to all objects returned by
sel ect / 3 given amatch specification that matches all objects.

{sel ect, MatchSpec}

Asfor sel ect , thetableistraversed by calling sel ect/ 3 and sel ect/ 1. The difference is that the match
specification is explicitly specified. This is how to state match specifications that cannot easily be expressed
within the syntax provided by QLC.

Examples:

An explicit match specification is here used to traverse the table:

9> true = ets:insert(Tab = ets:new(t, []1), [{1,a},{2,b},{3,c},{4,d}]),
MS = ets:fun2ms(fun({X,Y}) when (X > 1) or (X <5) -> {Y} end),
QH1 = ets:table(Tab, [{traverse, {select, MS}}]).

An example with an implicit match specification:

10> QH2 = qlc:q([{Y} || {X,Y} <- ets:table(Tab), (X > 1) or (X < 5)]).

The latter example is equivalent to the former, which can be verified using functiongl c: i nf o/ 1:
11> glc:info(QH1l) =:= qlc:info(QH2).
true

gl c: i nf o/ 1 returnsinformation about a query handle, and in this caseidentical information is returned for the two
query handles.

take(Tab, Key) -> [Object]

Types:
Tab = tab()
Key = term()

Object = tuple()
Returns and removes alist of all objects with key Key in table Tab.

The specified Key isused to identify the object by either comparing equal the key of an objectinanor der ed_set
table, or matching in other types of tables (for details on the difference, seel ookup/ 2 and new 2).

test ms(Tuple, MatchSpec) -> {ok, Result} | {error, Errors}
Types:

Tuple = tuple()

MatchSpec = match spec()

Result = term()

Errors = [{warning | error, string()}]

Thisfunctionisautility to test amatch specification usedin calstosel ect / 2. Thefunction both testsMat chSpec
for "syntactic" correctness and runs the match specification against object Tupl e.

Ericsson AB. All Rights Reserved.: STDLIB | 183

ets

If the match specification is syntactically correct, the function either returns{ ok, Resul t } , whereResul t iswhat
would havebeentheresultinareal sel ect/ 2 cal, orf al se if thematch specification doesnot match object Tupl e.

If the match specification contains errors, tuple{ error, Error s} isreturned, where Err or s isalist of natural
language descriptions of what was wrong with the match specification.

Thisisauseful debugging and test tool, especially when writing complicated sel ect / 2 calls.
See also: erlang:match_spec_test/3.

to dets(Tab, DetsTab) -> DetsTab
Types.

Tab = tab()

DetsTab = dets:tab name()

Fills an already created/opened Dets table with the objects in the already opened ETS table named Tab. The Dets
table is emptied before the objects are inserted.

update counter(Tab, Key, UpdateOp) -> Result

update counter(Tab, Key, UpdateOp, Default) -> Result

update counter(Tab, Key, X3 :: [UpdateOpl) -> [Result]

update counter(Tab, Key, X3 :: [UpdateOp], Default) -> [Result]
update counter(Tab, Key, Incr) -> Result

update counter(Tab, Key, Incr, Default) -> Result

Types:
Tab = tab()
Key = term(

)
UpdateOp = {Pos, Incr} | {Pos, Incr, Threshold, SetValue}

Pos = Incr Threshold = SetValue = Result = integer()
Default = tuple()

This function provides an efficient way to update one or more counters, without the trouble of having to look up an
object, update the object by incrementing an element, and insert the resulting object into the table again. The operation
is guaranteed to be atomic and isolated.

This function destructively update the object with key Key in table Tab by adding | ncr to the element at position
Pos. The new counter value is returned. If no position is specified, the element directly following key (<keypos>
+1) is updated.

If aThr eshol d is specified, the counter isreset to value Set Val ue if the following conditions occur:

* I ncr isnot negative (>= 0) and the result would be greater than (>) Thr eshol d.
e | ncr isnegative (< 0) and the result would be less than (<) Thr eshol d.

A list of Updat eOp can be supplied to do many update operations within the object. The operations are carried out in
the order specified in thelist. If the same counter position occurs more than once in the list, the corresponding counter
isthus updated many times, each time based on the previous result. The return valueisalist of the new counter values
from each update operation in the same order as in the operation list. If an empty list is specified, nothing is updated
and an empty list isreturned. If the function fails, no updates are done.

The specified Key is used to identify the object by either matching the key of an object in aset table, or compare
equal to the key of an object inan or der ed_set table (for details on the difference, seel ookup/ 2 and new 2).

184 | Ericsson AB. All Rights Reserved.: STDLIB

ets

If adefault object Def aul t isspecified, it isused as the object to be updated if the key is missing from the table. The
value in place of the key isignored and replaced by the proper key value. The return value is as if the default object
had not been used, that is, asingle updated element or alist of them.

The function fails with reason badar g in the following situations:

 Thetabletypeisnotset orordered_set.

» No object with the correct key exists and no default object was supplied.
e The object has the wrong arity.

* Thedefault object arity is smaller than <keypos>.

« Any field from the default object that is updated is not an integer.

e Theelement to update is not an integer.

» The element to update is also the key.

e Anyof Pos, | ncr, Thr eshol d, or Set Val ue isnot an integer.

update element(Tab, Key, ElementSpec :: {Pos, Value}) -> boolean()
update element(Tab, Key, ElementSpec :: [{Pos, Value}]) ->

boolean()
Types:
Tab = tab()
Key = term()

Value = term()

Pos = integer() >=1
Thisfunction provides an efficient way to update one or more elements within an object, without the trouble of having
to look up, update, and write back the entire object.

This function destructively updates the object with key Key in table Tab. The element at position Pos is given the
value Val ue.

A list of { Pos, Val ue} can be supplied to update many elements within the same object. If the same position occurs
more than once in the list, the last value in the list is written. If the list is empty or the function fails, no updates are
done. The function is aso atomic in the sense that other processes can never see any intermediate results.

Returnst r ue if an object with key Key isfound, otherwisef al se.

The specified Key is used to identify the object by either matching the key of an object in aset table, or compare
equal to the key of an object in an or der ed_set table (for details on the difference, seel ookup/ 2 and new 2).

The function fails with reason badar g in the following situations:

e Thetabletypeisnotset orordered_set.
e Pos<l

* Pos > object arity.

* Theelement to update is also the key.

whereis(TableName) -> tid() | undefined
Types:
TableName = atom()
This function returnsthe t i d() of the named table identified by Tabl eName, or undefi ned if no such table

exists. Theti d() can be used in place of the table name in all operations, which is dlightly faster since the name
does not have to be resolved on each call.

Ericsson AB. All Rights Reserved.: STDLIB | 185

ets

If thetableisdeleted, thet i d() will beinvalid even if another named tableis created with the same name.

186 | Ericsson AB. All Rights Reserved.: STDLIB

file_sorter

file_sorter

Erlang module

This module contains functions for sorting terms on files, merging already sorted files, and checking files for
sortedness. Chunks containing binary terms are read from a sequence of files, sorted internally in memory and written
on temporary files, which are merged producing one sorted file as output. Merging is provided as an optimization; it
is faster when the files are already sorted, but it always works to sort instead of merge.

On afile, atermis represented by a header and a binary. Two options define the format of terms on files:
{header, Header Lengt h}

Header Lengt h determines the number of bytes preceding each binary and containing the length of the binary
in bytes. Defaults to 4. The order of the header bytes is defined as follows: if B is a binary containing a header
only, size Si ze of thebinary iscalculated as<<Si ze: Header Lengt h/ uni t: 8>> = B.

{format, Fornat}

Option For mat determines the function that is applied to binaries to create the terms to be sorted. Defaults to
bi nary_t er mwhichisequivadenttof un binary _to_term 1.Vauebi nary isequivalenttof un(X)
-> X end, which means that the binaries are sorted asthey are. Thisisthe fastest format. If For mat ist erm
i 0: read/ 2 iscaledtoread terms. In that case, only the default value of option header isallowed.

Option format also determines what is written to the sorted output file: if Format is term then
i o: format/ 3 iscaled to write each term, otherwise the binary prefixed by a header is written. Notice that
the binary written is the same binary that was read; the results of applying function For nat are thrown away
when the terms have been sorted. Reading and writing terms using thei o module is much slower than reading
and writing binaries.

Other options are:
{order, Order}

The default isto sort termsin ascending order, but that can be changed by value descendi ng or by specifying
an ordering function Fun. An ordering function is antisymmetric, transitive, and total. Fun(A, B) isto return
t r ue if A comes before B in the ordering, otherwise f al se. An example of atypical ordering function isless
than or equal to, =</ 2. Using an ordering function slows down the sort considerably. Functions keysort ,
keyner ge and keycheck do not accept ordering functions.

{uni que, bool ean()}

When sorting or merging files, only thefirst of asequence of termsthat compare equal (==) isoutput if thisoption
issettot rue. Defaultsto f al se, which implies that all terms that compare equal are output. When checking
filesfor sortedness, acheck that no pair of consecutive terms compares equal isdoneif thisoptionissettot r ue.

{tnpdir, TenpDirectory}

The directory where temporary files are put can be chosen explicitly. The default, implied by value
""", is to put temporary files on the same directory as the sorted output file. If output is a function
(see below), the directory returned by fil e: get _cwd() is used instead. The names of temporary files
are derived from the Erlang nodename (node()), the process identifier of the current Erlang emulator
(os: get pi d()), and aunique integer (er | ang: uni que_i nt eger ([posi tive])). A typica nameis
fs_nynode@ryhost 1763 _4711. 17, where 17 is a sequence number. Existing files are overwritten.
Temporary files are deleted unless some uncaught EXI T signal occurs.

Ericsson AB. All Rights Reserved.: STDLIB | 187

file_sorter

{conpressed, bool ean()}

Temporary files and the output file can be compressed. Defaultsf al se, which implies that written files are not
compressed. Regardless of the value of option conpr essed, compressed files can aways be read. Notice that
reading and writing compressed files are significantly slower than reading and writing uncompressed files.

{size, Size}

By default about 512* 1024 bytes read from files are sorted internally. This option israrely needed.
{no_files, NoFiles}

By default 16 files are merged at atime. This option israrely needed.

As an alternative to sorting files, a function of one argument can be specified as input. When called with argument
r ead, the function is assumed to return either of the following:

« end_of _i nput or{end_of _i nput, Val ue}} whenthereisnomoreinput (Val ue isexplained below).

e {Objects, Fun},wherebj ect s isalist of binaries or terms depending on the format, and Fun is a new
input function.

Any other value is immediately returned as value of the current call to sort or keysor t . Each input function is
called exactly once. If an error occurs, the last function is called with argument cl ose, thereply of whichisignored.

A function of one argument can be specified as output. Theresults of sorting or merging theinput is collected in anon-
empty sequence of variablelength lists of binaries or terms depending on the format. The output function iscalled with
onelist at atime, and is assumed to return a new output function. Any other return value is immediately returned as
value of the current call to the sort or merge function. Each output function is called exactly once. When some output
function has been applied to al of the results or an error occurs, the last function is called with argument cl ose, and
thereply is returned as value of the current call to the sort or merge function.

If a function is specified as input and the last input function returns { end_of _i nput, Val ue}, the function
specified as output is called with argument { val ue, Val ue}. Thismakesit easy to initiate the sequence of output
functions with a value calculated by the input functions.

Asan example, consider sorting thetermson adisk log file. A function that reads chunks from the disk log and returns
alist of binariesis used asinput. The results are collected in alist of terms.

188 | Ericsson AB. All Rights Reserved.: STDLIB

file_sorter

sort(Log) ->
{ok, } = disk log:open([{name,Log}, {mode,read only}]),
Input = input(Log, start),
Output = output([]),
Reply = file sorter:sort(Input, Output, {format,term}),
ok = disk log:close(Log),
Reply.

input(Log, Cont) ->
fun(close) ->
ok;
(read) ->
case disk log:chunk(Log, Cont) of
{error, Reason} ->
{error, Reason};
{Cont2, Terms} ->
{Terms, input(Log, Cont2)};
{Cont2, Terms, Badbytes} ->
{Terms, input(Log, Cont2)};
eof ->
end of input
end
end.

output(L) ->
fun(close) ->
lists:append(lists:reverse(L));
(Terms) ->
output([Terms | L])
end.

For more examples of functions as input and output, see the end of thefi | e_sort er module; thet er mformat
isimplemented with functions.

The possible values of Reason returned when an error occurs are:

« bad_object, {bad_object, FileNane} - Applying the format function failed for some binary, or the
key(s) could not be extracted from some term.

e {bad term FileNane} -io:read/ 2 faledtoread someterm.

« {file_error, FileNane, file:posix()} -Foranexplanationof fil e: posix(),seefile(3).

« {premature_eof, FileNane} - End-of-file was encountered inside some binary term.

Data Types

file name() = file:name()
file names() = [file:name()]
i command() = read | close
i reply() =
end of input |
{end of input, value()} |
{[object ()], infun()} |

Ericsson AB. All Rights Reserved.: STDLIB | 189

file_sorter

input reply()
infun() fun((i _command()) -> i reply())
input() = file names() | infun()
input_reply() = term()
o_command() = {value, value()} | [object()] | close
o reply() = outfun() | output reply()

object() = term() | binary()
outfun() = fun((o_command()) -> o _reply())
output() = file name() | outfun()

output reply() = term()
value() = term()
options() = [option()] | option()
option() =
{compressed, boolean()
{header, header length
{format, format()} |
{no_files, no files()} |
{order, order()} |
{size, size()} |
{tmpdir, tmp directory()} |
{unique, boolean()}
format() = binary term | term | binary | format_ fun()
format fun() = fun((binary()) -> term())
header length() = integer() >=1
key pos() = integer() >= 1 | [integer() >= 1]
no files() = integer() >=1
order() = ascending | descending | order fun()
order fun() = fun((term(), term()) -> boolean())
size() = integer() >= 0
tmp directory() = []1 | file:name()
reason() =
bad object |
{bad object, file name()} |
{bad term, file name()} |
{file error,
file name(),
file:posix() | badarg | system limit} |
{premature eof, file name()}

F
O} |

Exports
check(FileName) -> Reply

check(FileNames, Options) -> Reply
Types:

190 | Ericsson AB. All Rights Reserved.: STDLIB

file_sorter

FileNames = file names()

Options = options()

Reply = {ok, [Result]} | {error, reason()}

Result = {FileName, TermPosition, term()}

FileName = file name()

TermPosition = integer() >=1
Checks files for sortedness. If afile is not sorted, the first out-of-order element is returned. The first term on afile
has position 1.

check(Fi | eNane) isequivalenttocheck([Fi |l eName], []).

keycheck(KeyPos, FileName) -> Reply
keycheck(KeyPos, FileNames, Options) -> Reply
Types:

KeyPos = key pos()

FileNames = file names()

Options = options()

Reply = {ok, [Result]} | {error, reason()}

Result = {FileName, TermPosition, term()}

FileName = file name()

TermPosition = integer() >=1
Checks files for sortedness. If afile is not sorted, the first out-of-order element is returned. The first term on afile
has position 1.

keycheck(KeyPos, Fil eNane) isequivalenttokeycheck(KeyPos, [FileNane], []).

keymerge (KeyPos, FileNames, Output) -> Reply
keymerge (KeyPos, FileNames, Output, Options) -> Reply
Types:

KeyPos = key pos()

FileNames = file names()

Output = output()

Options = options()

Reply = ok | {error, reason()} | output reply()
Merges tuples on files. Each input file is assumed to be sorted on key(s).

keymer ge(KeyPos, Fil eNanes, CQutput) is equivalent to keynerge(KeyPos, Fil eNanes,

keysort (KeyPos, FileName) -> Reply
Types:
KeyPos = key pos()
FileName = file name()
Reply = ok | {error, reason()} | input _reply() | output reply()
Sorts tuples on files.
keysort (N, FileNane) isequivaenttokeysort(N, [FileNane], FileNane).

Ericsson AB. All Rights Reserved.: STDLIB | 191

file_sorter

keysort(KeyPos, Input, Output) -> Reply
keysort(KeyPos, Input, Output, Options) -> Reply
Types:
KeyPos = key pos()
Input = input()
Output = output()
Options = options()
Reply = ok | {error, reason()} | input _reply() | output reply()
Sortstupleson files. The sort is performed on the el ement(s) mentioned in Key Pos. If two tuples compare equal (==
on one element, the next element according to Key Pos is compared. The sort is stable.

keysort (N, |nput, Qutput) isequivaenttokeysort(N, |nput, Qutput, []).

merge (FileNames, Output) -> Reply
merge(FileNames, Output, Options) -> Reply
Types:
FileNames = file names()
Qutput = output()
Options = options()
Reply = ok | {error, reason()} | output reply()
Merges terms on files. Each input file is assumed to be sorted.

mer ge(Fi | eNanes, CQutput) isequivalenttorrer ge(Fi |l eNames, Qutput, []).

sort(FileName) -> Reply
Types:

FileName = file name()

Reply = ok | {error, reason()} | input reply() | output reply()
Sortsterms on files.

sort (Fi | eNane) isequivalenttosort ([Fi | eNane], Fil eNane).

sort(Input, Output) -> Reply
sort(Input, Output, Options) -> Reply
Types:
Input = input()
Qutput = output()
Options = options()
Reply = ok | {error, reason()} | input reply() | output reply()
Sortsterms on files.
sort (I nput, Qutput) isequivaenttosort (I nput, Qutput, []).

192 | Ericsson AB. All Rights Reserved.: STDLIB

filelib

filelib

Erlang module

This module contains utilities on a higher level than thef i | e module.

This module does not support "raw"” filenames (that is, files whose names do not comply with the expected encoding).
Such files areignored by the functions in this module.

For more information about raw filenames, seethef i | e module.

Functionality in this module generally assumes valid input and does not necessarily fail on input that does not use
avalid encoding, but may instead very likely produce invalid output.

File operations used to accept filenames containing null characters (integer value zero). This caused the nameto be
truncated and in some cases arguments to primitive operationsto be mixed up. Filenames containing null characters
inside the filename are now rejected and will cause primitive file operations to fail.

Currently null charactersat the end of thefilenamewill be accepted by primitivefile operations. Such filenamesare
however still documented as invalid. The implementation will also change in the future and reject such filenames.

Data Types

filename() = file:name()
dirname() = filename()
dirname all() = filename all()
filename all() = file:name all()
find file rule() =
{0bjDirSuffix :: string(), SrcDirSuffix :: string()}

find source rule() =
{ObjExtension :: string(),
SrcExtension :: string(),
[find file rule()1}

Exports

ensure dir(Name) -> ok | {error, Reason}
Types:
Name = filename all() | dirname_all()
Reason = file:posix()
Ensuresthat all parent directoriesfor the specified file or directory name Nane exigt, trying to createthemif necessary.

Returns ok if al parent directories already exist or can be created. Returns { error, Reason} if some parent
directory does not exist and cannot be created.

Ericsson AB. All Rights Reserved.: STDLIB | 193

filelib

file size(Filename) -> integer() >= 0
Types.

Filename = filename all()
Returns the size of the specified file.

fold files(Dir, RegExp, Recursive, Fun, AccIn) -> AccOut
Types.
Dir = dirname()
RegExp = string()
Recursive = boolean()
Fun = fun((F :: file:filename(), AccIn) -> AccOut)
AccIn = AccOut = term()
Folds function Fun over all (regular) files F in directory Di r that match the regular expression RegExp (for a

description of the allowed regular expressions, seether e module). If Recur si ve ist r ue, al subdirectoriesto Di r
are processed. The regular expression matching is only done on the filename without the directory part.

If Unicode filename trandlation is in effect and the file system is transparent, filenames that cannot be interpreted as
Unicode can be encountered, in which case the f un() must be prepared to handle raw filenames (that is, binaries).
If the regular expression contains codepoints > 255, it does not match filenames that do not conform to the expected
character encoding (that is, are not encoded in valid UTF-8).

For more information about raw filenames, seethef i | e module.

is dir(Name) -> boolean()
Types:

Name = filename all() | dirname_all()
Returnst r ue if Nane refersto adirectory, otherwisef al se.

is file(Name) -> boolean()
Types:
Name = filename all() | dirname_all()
Returnst r ue if Nane refersto afile or adirectory, otherwisef al se.

is _regular(Name) -> boolean()
Types:
Name = filename all()
Returnst r ue if Nane refersto a (regular) file, otherwisef al se.

last modified(Name) -> file:date time() | ©
Types:
Name = filename all() | dirname_all()
Returns the date and time the specified file or directory was last modified, or O if the file does not exist.

wildcard(Wildcard) -> [file:filename()]
Types:

194 | Ericsson AB. All Rights Reserved.: STDLIB

filelib

Wildcard = filename() | dirname()
Returnsalist of all files that match Unix-style wildcard string W | dcar d.

The wildcard string looks like an ordinary filename, except that the following "wildcard characters' are interpreted
in aspecial way:
?

Matches one character.

Matches any number of characters up to the end of the filename, the next dot, or the next dlash.

**

Two adjacent * used as a single pattern match all files and zero or more directories and subdirectories.
[Characterl,Character2,...]

Matchesany of the characterslisted. Two characters separated by ahyphen match arange of characters. Example:
[A- Z] matchesany uppercase |etter.

{Item,...}
Alternation. Matches one of the alternatives.

Other charactersrepresent themselves. Only filenamesthat have exactly the same character in the same position match.
Matching is case-sensitive, for example, "a" does not match "A".

Directory separators must always be written as/ , even on Windows.

A character preceded by \ losesits special meaning. Notethat \ must bewrittenas\ \ inastring literal. For example,
"\?2*" will match any filename starting with ?.

Notice that multiple "*" characters are allowed (asin Unix wildcards, but opposed to Windows/DOS wildcards).
Examples:
The following examples assume that the current directory is the top of an Erlang/OTP installation.

Tofind al . beamfilesin all applications, use the following line:
filelib:wildcard("lib/*/ebin/*.beam").

Tofind. erl or. hrl inall applicationssr c directories, use either of the following lines:
filelib:wildcard("lib/*/src/*.2rl")
filelib:wildcard("lib/*/src/*.{erl, hrl}")

Tofindal . hrl filesinsrc ori ncl ude directories:
filelib:wildcard("lib/*/{src,include}/*.hrl").

Tofindal . erl or. hrl filesineither src ori ncl ude directories:
filelib:wildcard("lib/*/{src,include}/*.{erl, hri}")

Tofindal . erl or. hrl filesinany subdirectory:

filelib:wildcard("lib/**/*.{erl,hrl}")

Ericsson AB. All Rights Reserved.: STDLIB | 195

filelib

wildcard(Wildcard, Cwd) -> [file:filename()]
Types.

Wildcard = filename() | dirname()

Cwd = dirname()

Sameaswi | dcar d/ 1, except that Ond is used instead of the working directory.

find file(Filename :: filename(), Dir :: filename()) ->
{ok, filename()} | {error, not found}
find file(Filename :: filename(),
Dir :: filename(),

Rules :: [find file rule()]) ->
{ok, filename()} | {error, not found}

Looksfor afile of the given name by applying suffix rulesto the given directory path. For example, arule{ " ebi n",
"src"} means that if the directory path ends with " ebi n", the corresponding path ending in " sr c" should be
searched.

If Rul es isleft out or is an empty list, the default system rules are used. See also the Kernel application parameter
source_search_rul es.

find source(FilePath :: filename()) ->
{ok, filename()} | {error, not found}

Equivalent to f i nd_source(Base, Dir),whereDir isfil ename: di rname(Fi | ePat h) and Base is
fil ename: basenanme(Fi | ePat h) .

find source(Filename :: filename(), Dir :: filename()) ->
{ok, filename()} | {error, not found}
find source(Filename :: filename(),
Dir :: filename(),
Rules :: [find source rule()]) ->

{ok, filename()} | {error, not found}

Applies file extension specific rules to find the source file for a given object file relative to the object directory. For
example, for afilewith theextension . beam the default ruleisto look for afile with acorresponding extension. er |
by replacing the suffix " ebi n" of the object directory pathwith" src" or" src/ *" . Thefile searchisdonethrough
find_fil el 3. Thedirectory of the object fileis awaystried before any other directory specified by the rules.

If Rul es isleft out or is an empty list, the default system rules are used. See also the Kernel application parameter
source_search_rul es.

safe relative path(Filename, Cwd) -> unsafe | SafeFilename
Types:
Filename = Cwd = SafeFilename = filename all()
Sanitizes the relative path by eliminating ".." and "." components to protect against directory traversal attacks. Either
returns the sanitized path name, or the atom unsaf e if the path is unsafe. The path is considered unsafe in the
following circumstances:
e Thepathisnot relative.
« A"." component would climb up above the root of the relative path.
* A symbolic link in the path points above the root of the relative path.

196 | Ericsson AB. All Rights Reserved.: STDLIB

filelib

Examples:

1> {ok, Cwd} = file:get cwd().

2> filelib:safe relative path("dir/sub dir/..", Cwd).
Ildirll

3> filelib:safe relative path("dir/..", Cwd).

[

4> filelib:safe relative path("dir/../..", Cwd).
unsafe

5> filelib:safe relative path("/abs/path", Cwd).
unsafe

Ericsson AB. All Rights Reserved.: STDLIB | 197

filename

filename

Erlang module

This module provides functions for analyzing and manipulating filenames. These functions are designed so that the
Erlang code can work on many different platforms with different filename formats. With filename is meant all strings
that can be used to denote a file. The filename can be a short relative name like f 0o. er |, along absolute name
including a drive designator, a directory name like D: \ usr/l ocal \ bi n\erl/1i b\tool s\foo. erl, orany
variations in between.

In Windows, all functions return filenames with forward slashes only, even if the arguments contain backslashes. To
normalize a filename by removing redundant directory separators, usej oi n/ 1.

Themodule supportsraw filenamesintheway that if abinary ispresent, or thefilename cannot beinterpreted according
tothereturnvalueof fi | e: nati ve_nane_encodi ng/ 0, araw filenameisalso returned. For example,j oi n/ 1
provided with apath component that isabinary (and cannot be interpreted under the current native filename encoding)
resultsin araw filename that is returned (the join operation is performed of course). For more information about raw
filenames, seethef i | e module.

Functionality in this module generally assumes valid input and does not necessarily fail on input that does not use
avalid encoding, but may instead very likely produce invalid output.

File operations used to accept filenames containing null characters (integer value zero). This caused the nameto be
truncated and in some cases argumentsto primitive operationsto be mixed up. Filenames containing null characters
inside the filename are now rejected and will cause primitive file operations to fail.

Currently null charactersat the end of thefilenamewill be accepted by primitivefile operations. Such filenamesare
however still documented as invalid. The implementation will also change in the future and reject such filenames.

Exports

absname(Filename) -> file:filename all()
Types.
Filename = file:name all()

Convertsarelative Fi | ename and returns an absolute name. No attempt is made to create the shortest absolute name,
asthis can give incorrect results on file systems that allow links.

Unix examples:

1> pwd().

"/usr/local"

2> filename:absname("foo").
"/usr/local/foo"

3> filename:absname("../x").
"/usr/local/../x"

4> filename:absname("/").
II/II

198 | Ericsson AB. All Rights Reserved.: STDLIB

filename

Windows examples:

1> pwd().

"D:/usr/local"

2> filename:absname("foo").
"D:/usr/local/foo"

3> filename:absname("../x").
"D:/usr/local/../x"

4> filename:absname("/").
YL

absname(Filename, Dir) -> file:filename all()
Types.
Filename = Dir = file:name all()

Same asabsnane/ 1, except that the directory to which the filename is to be made relative is specified in argument
Dr.

absname join(Dir, Filename) -> file:filename all()
Types:
Dir = Filename = file:name all()
Joins an absolute directory with a relative filename. Similar to j oi n/ 2, but on platforms with tight restrictions
on raw filename length and no support for symbalic links (read: VxWorks), leading parent directory components

in Fi | enanme are matched against trailing directory components in Di r so they can be removed from the result -
minimizing its length.

basedir(PathType, Application) -> file:filename all()
basedir(PathsType, Application) -> [file:filename all()]
Types:

PathType = basedir path type()

PathsType = basedir paths type()

Application = string() | binary()

basedir path type() =

user cache | user config | user data | user log

basedir paths type() = site config | site data
Equivalent to basedir(PathType, Application, #{}) or basedir(PathsType, Application, #{}).

basedir(PathType, Application, Opts) -> file:filename all()

basedir(PathsType, Application, Opts) -> [file:filename all()]
Types.

Ericsson AB. All Rights Reserved.: STDLIB | 199

filename

PathType = basedir path type()
PathsType = basedir paths type()
Application = string() | binary()
Opts = basedir opts()
basedir path type() =
user cache | user config | user _data | user log
basedir paths type() = site config | site data
basedir opts() =
#{author => string() | binary(),
0s => windows | darwin | linux,
version => string() | binary()}
Returns a suitable path, or paths, for a given type. If 0s is not set in Opt s the function will default to the native
option, that is' I i nux' ," darwi n" or' wi ndows' , asunderstood by os: t ype/ 0. Anything not recognized as
"darwi n' or' wi ndows' isinterpretedas’ | i nux' .
Theoptions' aut hor' and' ver si on' areonly used with' wi ndows' option mode.
e user_cache
The path location is intended for transient data files on alocal machine.

On Linux: Respects the os environment variable XDG_CACHE_HOVE.

1> filename:basedir(user cache, "my application", #{os=>linux}).
"/home/otptest/.cache/my application"

On Darwin:

1> filename:basedir(user cache, "my application", #{os=>darwin}).
"/home/otptest/Library/Caches/my application"

On Windows:

1> filename:basedir(user cache, "My App").

"c:/Users/otptest/AppData/Local/My App/Cache"

2> filename:basedir(user cache, "My App").

"c:/Users/otptest/AppData/Local/My App/Cache"

3> filename:basedir(user cache, "My App", #{author=>"Erlang"}).
"c:/Users/otptest/AppData/Local/Erlang/My App/Cache"

4> filename:basedir(user cache, "My App", #{version=>"1.2"}).
"c:/Users/otptest/AppData/Local/My App/1l.2/Cache"

5> filename:basedir(user cache, "My App", #{author=>"Erlang",version=>"1.2"}).
"c:/Users/otptest/AppData/Local/Erlang/My App/1l.2/Cache"

200 | Ericsson AB. All Rights Reserved.: STDLIB

filename

user _config
The path location is intended for persistent configuration files.
On Linux: Respects the os environment variable XDG_CONFI G_HOME.

2> filename:basedir(user config, "my application", #{os=>linux}).
"/home/otptest/.config/my application"

On Darwin:

2> filename:basedir(user config, "my application", #{os=>darwin}).
"/home/otptest/Library/Application Support/my application"

On Windows:

1> filename:basedir(user config, "My App").

"c:/Users/otptest/AppData/Roaming/My App"

2> filename:basedir(user config, "My App", #{author=>"Erlang", version=>"1.2"}).
"c:/Users/otptest/AppData/Roaming/Erlang/My App/1.2"

user _data
The path location isintended for persistent data files.
On Linux: Respects the os environment variable XDG_DATA HOVE.

3> filename:basedir(user data, "my application", #{os=>linux}).
"/home/otptest/.local/my application"

On Darwin:

3> filename:basedir(user data, "my application", #{os=>darwin}).
"/home/otptest/Library/Application Support/my application"

On Windows:

8> filename:basedir(user data, "My App").

"c:/Users/otptest/AppData/Local/My App"

9> filename:basedir(user data, "My App",#{author=>"Erlang",version=>"1.2"}).
"c:/Users/otptest/AppData/Local/Erlang/My App/1.2"

Ericsson AB. All Rights Reserved.: STDLIB | 201

filename

e user_log
The path location is intended for transient log files on alocal machine.
On Linux: Respects the os environment variable XDG_CACHE_HOVE.

4> filename:basedir(user log, "my application", #{os=>linux}).
"/home/otptest/.cache/my application/log"

On Darwin:

4> filename:basedir(user log, "my application", #{os=>darwin}).
"/home/otptest/Library/Logs/my application"

On Windows:

12> filename:basedir(user log, "My App").

"c:/Users/otptest/AppData/Local/My App/Logs"

13> filename:basedir(user log, "My App",#{author=>"Erlang",version=>"1.2"}).
"c:/Users/otptest/AppData/Local/Erlang/My App/l.2/Logs"

e site_config
On Linux: Respects the os environment variable XDG_CONFI G_DI RS.

5> filename:basedir(site data, "my application", #{os=>linux}).
["/usr/local/share/my application",

"/usr/share/my application"]
6> os:getenv("XDG_CONFIG DIRS").
"/etc/xdg/xdg-ubuntu:/usr/share/upstart/xdg:/etc/xdg"
7> filename:basedir(site config, "my application", #{os=>linux}).
["/etc/xdg/xdg-ubuntu/my application",

"/usr/share/upstart/xdg/my application",

"/etc/xdg/my application"]
8> os:unsetenv("XDG CONFIG DIRS").
true
9> filename:basedir(site config, "my application", #{os=>linux}).
["/etc/xdg/my application"]

On Darwin:

5> filename:basedir(site config, "my application", #{os=>darwin}).
["/Library/Application Support/my application"]

202 | Ericsson AB. All Rights Reserved.: STDLIB

filename

e site data
On Linux: Respects the os environment variable XDG_DATA_DI RS.

10> os:getenv("XDG DATA DIRS").
"/usr/share/ubuntu:/usr/share/gnome:/usr/local/share/:/usr/share/"
11> filename:basedir(site data, "my application", #{os=>linux}).
["/usr/share/ubuntu/my application",

"/usr/share/gnome/my application",

"/usr/local/share/my application",

"/usr/share/my application"]
12> os:unsetenv("XDG_DATA DIRS").
true
13> filename:basedir(site data, "my application", #{os=>linux}).
["/usr/local/share/my application",

"/usr/share/my application"]

On Darwin:

5> filename:basedir(site data, "my application", #{os=>darwin}).
["/Library/Application Support/my application"]

basename(Filename) -> file:filename all()
Types:
Filename = file:name all()
Returnsthe last component of Fi | enane, or Fi | enane itself if it does not contain any directory separators.
Examples:

5> filename:basename("foo").
"foo"

6> filename:basename("/usr/foo").
"foo"

7> filename:basename("/").

[l

basename(Filename, Ext) -> file:filename all()
Types.
Filename = Ext = file:name all()
Returns the last component of Fi | enane with extension Ext stripped. This function is to be used to remove

a (possible) specific extension. To remove an existing extension when you are unsure which one it is, use
r oot name(basenane(Fil enane)).

Examples:

Ericsson AB. All Rights Reserved.: STDLIB | 203

filename

8> filename:basename("~/src/kalle.erl", ".erl").

"kalle"

9> filename:basename("~/src/kalle.beam", ".erl").
"kalle.beam"

10> filename:basename("~/src/kalle.old.erl"”, ".erl").
"kalle.old"

11> filename:rootname(filename:basename("~/src/kalle.erl")).
"kalle"

12> filename:rootname(filename:basename("~/src/kalle.beam")).
"kalle"

dirname(Filename) -> file:filename all()
Types:
Filename = file:name all()
Returns the directory part of Fi | enarme.
Examples:

13> filename:dirname("/usr/src/kalle.erl").
"Jusr/src"
14> filename:dirname("kalle.erl").

5> filename:dirname("\\usr\\src/kalle.erl"). % Windows
"/usr/src"

extension(Filename) -> file:filename all()
Types:
Filename = file:name_all()
Returnsthe file extension of Fi | enane, including the period. Returns an empty string if no extension exists.
Examples:

15> filename:extension("foo.erl").
"erl"
16> filename:extension("beam.src/kalle").

(1

flatten(Filename) -> file:filename all()
Types:
Filename = file:name all()
Converts a possibly deep list filename consisting of characters and atoms into the corresponding flat string filename.

join(Components) -> file:filename all()
Types:
Components = [file:name all()]

Joins alist of filename Conponent s with directory separators. If one of the elements of Conponent s includes an
absolute path, such as" / xxx" , the preceding elements, if any, are removed from the result.

204 | Ericsson AB. All Rights Reserved.: STDLIB

filename

Theresult is"normalized":

e Redundant directory separators are removed.
* InWindows, all directory separators are forward slashes and the drive letter isin lower case.

Examples:
17> filename:join(["/usr", "local", "bin"]).
"/usr/local/bin"
18> filename:join(["a/b///c/"]).
"a/b/c"

6> filename:join(["B:a\\b///c/"]1). % Windows
"b:a/b/c"

join(Namel, Name2) -> file:filename all()
Types:
Namel = Name2 = file:name all()

Joins two filename components with directory separators. Equivalent toj oi n([Namel, Nanme2]).

nativename(Path) -> file:filename all()
Types.
Path = file:name all()

ConvertsPat h to aform accepted by the command shell and native applications on the current platform. On Windows,
forward dashes are converted to backward slashes. On all platforms, the nameis normalized asdone by j oi n/ 1.

Examples:

19> filename:nativename("/usr/local/bin/"). % Unix
"/usr/local/bin"

7> filename:nativename("/usr/local/bin/"). % Windows
"\\usr\\local\\bin"

pathtype(Path) -> absolute | relative | volumerelative
Types:
Path = file:name all()
Returns the path type, which is one of the following:
absol ute
The path name refers to a specific file on a specific volume.
Unix example: / usr/ | ocal / bi n
Windows example: D: / usr/ | ocal / bi n
relative
The path name is relative to the current working directory on the current volume.
Example: f oo/ bar, ../src

Ericsson AB. All Rights Reserved.: STDLIB | 205

filename

vol unerel ati ve

The path name is relative to the current working directory on a specified volume, or it is a specific file on the
current working volume.

Windows example: D: bar . erl, /bar/foo.erl

rootname(Filename) -> file:filename all()
rootname(Filename, Ext) -> file:filename all()
Types:

Filename = Ext = file:name all()

Removes a filename extension. r oot name/ 2 works as r oot name/ 1, except that the extension is removed only
ifitisExt.
Examples:

20> filename:rootname("/beam.src/kalle").
"/beam.src/kalle"

21> filename:rootname("/beam.src/foo.erl").
"/beam.src/foo"

22> filename:rootname("/beam.src/foo.erl", ".erl").
"/beam.src/foo"
23> filename:rootname("/beam.src/foo.beam", ".erl").

"/beam.src/foo.beam"

safe relative path(Filename) -> unsafe | SafeFilename
Types:
Filename = SafeFilename = file:name all()
Sanitizes the relative path by eliminating ".." and "." components to protect against directory traversal attacks. Either

returns the sanitized path name, or the atom unsaf e if the path is unsafe. The path is considered unsafe in the
following circumstances:

e Thepathisnot relative.
« A "." component would climb up above the root of the relative path.

Thisfunction isdeprecated. Usefi |l el i b: safe_rel ati ve_pat h/ 2 instead for sanitizing paths.

Examples:

1> filename:safe relative path("dir/sub dir/..").
Ildirll

2> filename:safe relative path("dir/..").

[]

3> filename:safe relative path("dir/../..").
unsafe

4> filename:safe relative path("/abs/path").
unsafe

split(Filename) -> Components
Types.

206 | Ericsson AB. All Rights Reserved.: STDLIB

filename

Filename = file:name all()
Components = [file:name all()]

Returns alist whose elements are the path components of Fi | enane.
Examples:

24> filename:split("/usr/local/bin").
[II/II , Ilusrll) Illocalll , IlbinII]

25> filename:split("foo/bar").

[Ilfooll , Ilbarll]

26> filename:split("a:\\msdev\\include").
["a:/","msdev", "include"]

Ericsson AB. All Rights Reserved.: STDLIB | 207

gb_sets

gb _sets

Erlang module

This module provides ordered sets using Prof. Arne Andersson's General Balanced Trees. Ordered sets can be much
more efficient than using ordered lists, for larger sets, but depends on the application.

This module considers two elements as different if and only if they do not compare equal (==).

Complexity Note

The complexity on set operations is bounded by either O(|S]) or O(|T| * log(|S])), where S is the largest given
set, depending on which is fastest for any particular function call. For operating on sets of aimost equal size, this
implementation is about 3 times slower than using ordered-list sets directly. For sets of very different sizes, however,
this solution can be arbitrarily much faster; in practical cases, often 10-100 times. Thisimplementation is particularly
suited for accumulating elements afew at atime, building up alarge set (> 100-200 elements), and repeatedly testing
for membership in the current set.

Aswith normal tree structures, lookup (membership testing), insertion, and deletion have logarithmic complexity.

Compatibility
The following functions in this module also exist and provides the same functionality in the set s(3) and
ordset s(3) modules. That is, by only changing the module name for each call, you can try out different set
representations.

e add_elenent/2
e del _elenment/2
o filter/2

e fold/3

e fromlist/1

e intersection/1
e intersection/2
e is_elenment/2

e is_ enpty/l

e is_set/l

e is_subset/2

* newoO

e sizell

e subtract/2

e to list/1

e union/1l

e union/2

Data Types
set (Element)
A general balanced set.

208 | Ericsson AB. All Rights Reserved.: STDLIB

gb_sets

set() = set(term())
iter(Element)
A general balanced set iterator.

iter() = iter(term())
Exports

add (Element, Setl) -> Set2
add element(Element, Setl) -> Set2
Types:

Setl = Set2 = set(Element)

Returns a new set formed from Set 1 with El enment inserted. If El enent isalready an element in Set 1, nothing
is changed.

balance(Setl) -> Set2
Types:
Setl = Set2 = set(Element)
Rebalances the tree representation of Set 1. Notice that thisis rarely necessary, but can be motivated when a large

number of elements have been deleted from the tree without further insertions. Rebalancing can then be forced to
minimise lookup times, as deletion does not rebalance the tree.

del element(Element, Setl) -> Set2
Types.
Setl = Set2 = set(Element)

Returns a new set formed from Set 1 with El enent removed. If El enent isnot an element in Set 1, nothing is
changed.

delete(Element, Setl) -> Set2
Types:
Setl = Set2 = set(Element)

Returns a new set formed from Set 1 with El erent removed. Assumesthat El ement ispresentin Set 1.

delete any(Element, Setl) -> Set2
Types:
Setl = Set2 = set(Element)
Returns a new set formed from Set 1 with El ement removed. If El enent isnot an element in Set 1, nothing is
changed.

difference(Setl, Set2) -> Set3
Types:
Setl = Set2 = Set3 = set(Element)

Returns only the elements of Set 1 that are not also elements of Set 2.

Ericsson AB. All Rights Reserved.: STDLIB | 209

gb_sets

empty() -> Set
Types.

Set = set()
Returns a new empty set.

filter(Pred, Setl) -> Set2

Types.
Pred = fun((Element) -> boolean())
Setl = Set2 = set(Element)

Filters elementsin Set 1 using predicate function Pr ed.

fold(Function, AccO, Set) -> Accl

Types.
Function = fun((Element, AccIn) -> AccOut)
AccO = Accl = AccIn = AccOut = Acc
Set = set(Element)

Folds Funct i on over every element in Set returning the fina value of the accumulator.

from list(List) -> Set
Types:
List = [Element]
Set = set(Element)

Returns a set of the elementsin Li st , whereLi st can be unordered and contain duplicates.

from ordset(List) -> Set
Types:

List = [Element]

Set = set(Element)

Turns an ordered-set list Li st into aset. Thelist must not contain duplicates.

insert(Element, Setl) -> Set2
Types.
Setl = Set2 = set(Element)

Returns a new set formed from Set 1 with El ement inserted. Assumesthat El enment isnot present in Set 1.

intersection(SetList) -> Set
Types:
SetlList = [set(Element), ...]
Set = set(Element)

Returns the intersection of the non-empty list of sets.

210 | Ericsson AB. All Rights Reserved.: STDLIB

gb_sets

intersection(Setl, Set2) -> Set3
Types.
Setl = Set2 = Set3 = set(Element)

Returns the intersection of Set 1 and Set 2.

is disjoint(Setl, Set2) -> boolean()
Types:
Setl = Set2 = set(Element)

Returnst r ue if Set 1 and Set 2 are digoint (have no elementsin common), otherwisef al se.

is element(Element, Set) -> boolean()
Types:
Set = set(Element)

Returnst r ue if El enent isan element of Set , otherwisef al se.

is empty(Set) -> boolean()
Types:
Set = set()
Returnst r ue if Set isan empty set, otherwisef al se.

is member(Element, Set) -> boolean()
Types:
Set = set(Element)
Returnst r ue if El enent isan element of Set , otherwisef al se.

is set(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter mappearsto be a set, otherwisef al se.

is subset(Setl, Set2) -> boolean()
Types.
Setl = Set2 = set(Element)

Returnst r ue when every element of Set 1 isalso amember of Set 2, otherwisef al se.

iterator(Set) -> Iter
Types:
Set = set(Element)
Iter = iter(Element)

Returns an iterator that can be used for traversing the entries of Set ; see next / 1. The implementation of thisis
very efficient; traversing the whole set using next / 1 isonly slightly slower than getting the list of al elementsusing

Ericsson AB. All Rights Reserved.: STDLIB | 211

gb_sets

to_li st/ 1 andtraversing that. The main advantage of the iterator approach isthat it does not require the complete
list of all elementsto be built in memory at one time.

iterator from(Element, Set) -> Iter
Types:

Set = set(Element)

Iter = iter(Element)

Returns an iterator that can be used for traversing the entries of Set ; seenext / 1. The difference as compared to the
iterator returned by i t er at or / 1 isthat the first element greater than or equal to El enent isreturned.

largest(Set) -> Element
Types:
Set = set(Element)
Returnsthe largest element in Set . Assumesthat Set is not empty.

new() -> Set
Types:

Set = set()
Returns a new empty set.

next(Iterl) -> {Element, Iter2} | none
Types:
Iterl = Iter2 = iter(Element)

Returns{ El enent, 1ter2},whereEl enent isthe smallest element referred to by iterator | t er 1, and | t er 2
isthe new iterator to be used for traversing the remaining elements, or the atom none if no elements remain.

singleton(Element) -> set(Element)

Returns a set containing only element El enment .

size(Set) -> integer() >= 0
Types:

Set = set()
Returns the number of elementsin Set .

smallest(Set) -> Element
Types:
Set = set(Element)
Returns the smallest element in Set . Assumesthat Set is nhot empty.

subtract(Setl, Set2) -> Set3
Types:
Setl = Set2 = Set3 = set(Element)

Returns only the elements of Set 1 that are not also elements of Set 2.

212 | Ericsson AB. All Rights Reserved.: STDLIB

gb_sets

take largest(Setl) -> {Element, Set2}

Types.
Setl = Set2 = set(Element)

Returns{ El enent, Set 2},whereEl enent isthelargest elementin Set 1, and Set 2 isthis set with El enent

deleted. Assumesthat Set 1 is not empty.

take smallest(Setl) -> {Element, Set2}

Types:
Setl = Set2 = set(Element)

Returns{ El emrent, Set 2} ,whereEl ement isthesmallest elementin Set 1, and Set 2 isthisset with El enent

deleted. Assumesthat Set 1 isnot empty.

to list(Set) -> List
Types.
Set = set(Element)
List = [Element]

Returns the elements of Set asalist.

union(SetList) -> Set

Types:
SetList = [set(Element), ...]
Set = set(Element)

Returns the merged (union) set of the list of sets.

union(Setl, Set2) -> Set3
Types:
Setl = Set2 = Set3 = set(Element)

Returns the merged (union) set of Set 1 and Set 2.

See Also
gb_trees(3),ordsets(3),sets(3)

Ericsson AB. All Rights Reserved.: STDLIB | 213

gb_trees

gb_trees

Erlang module

This module provides Prof. Arne Andersson's General Balanced Trees. These have no storage overhead compared to
unbalanced binary trees, and their performance is better than AVL trees.

This module considers two keys as different if and only if they do not compare equal (==).

Data Structure
Trees and iterators are built using opague data structures that should not be pattern-matched from outside this module.
Thereisno attempt to balance trees after deletions. As deletions do not increase the height of atree, this should be OK.

The original balance condition h(T) <= ceil(c * log(|T])) has been changed to the similar (but not quite equivalent)
condition 2 h(T) <= |T|” c. This should aso be OK.

Data Types
tree(Key, Value)
A general balanced tree.

tree() = tree(term(), term())
iter(Key, Value)

A general balanced tree iterator.

iter() = iter(term(), term())

Exports

balance(Treel) -> Tree2
Types:
Treel = Tree2 = tree(Key, Value)
Rebalances Tr eel1. Naotice that this is rarely necessary, but can be motivated when many nodes have been deleted

from the tree without further insertions. Rebalancing can then be forced to minimize lookup times, as deletion does
not rebalance the tree.

delete(Key, Treel) -> Tree2
Types:
Treel = Tree2 = tree(Key, Value)

Removes the node with key Key from Tr eel and returns the new tree. Assumes that the key is present in the tree,
crashes otherwise.

delete any(Key, Treel) -> Tree2
Types.
Treel = Tree2 = tree(Key, Value)

Removes the node with key Key from Tr eel if the key is present in the tree, otherwise does nothing. Returns the
new tree.

214 | Ericsson AB. All Rights Reserved.: STDLIB

gb_trees

take(Key, Treel) -> {Value, Tree2}
Types.
Treel = Tree2 = tree(Key, term())
Key = Value = term()

Returnsavalue Val ue from node with key Key and new Tr ee2 without the node with this value. Assumes that the
node with key is present in the tree, crashes otherwise.

take any(Key, Treel) -> {Value, Tree2} | error
Types:

Treel = Tree2 = tree(Key, term())

Key = Value = term()

Returns avalue Val ue from node with key Key and new Tr ee2 without the node with this value. Returns er r or
if the node with the key is not present in the tree.

empty() -> tree()
Returns a new empty tree.

enter(Key, Value, Treel) -> Tree2
Types:
Treel = Tree2 = tree(Key, Value)

InsertsKey withvalue Val ue into Tr eel if thekey isnot present in thetree, otherwise updatesKey tovalueVal ue
in Tr eel. Returnsthe new tree.

from orddict(List) -> Tree

Types.
List = [{Key, Value}]
Tree = tree(Key, Value)

Turnsan ordered list Li st of key-valuetuplesinto atree. Thelist must not contain duplicate keys.

get(Key, Tree) -> Value
Types:
Tree = tree(Key, Value)
Retrieves the value stored with Key in Tr ee. Assumes that the key is present in the tree, crashes otherwise.

insert(Key, Value, Treel) -> Tree2
Types:
Treel = Tree2 = tree(Key, Value)

Inserts Key with value Val ue into Tr eel and returns the new tree. Assumes that the key is not present in the tree,
crashes otherwise.

is defined(Key, Tree) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 215

gb_trees

Tree = tree(Key, Value :: term())

Returnst r ue if Key ispresentin Tr ee, otherwisef al se.

is empty(Tree) -> boolean()
Types:
Tree = tree()
Returnst r ue if Tr ee isan empty tree, othwewisef al se.

iterator(Tree) -> Iter

Types:
Tree = tree(Key, Value)
Iter = iter(Key, Value)

Returns an iterator that can be used for traversing the entries of Tr ee; see next / 1. The implementation of thisis
very efficient; traversing thewholetree using next / 1 isonly slightly slower than getting thelist of all elementsusing
to_li st/ 1 andtraversing that. The main advantage of the iterator approach isthat it does not require the complete

list of all elementsto be built in memory at one time.

iterator from(Key, Tree) -> Iter

Types.
Tree = tree(Key, Value)
Iter = iter(Key, Value)

Returns an iterator that can be used for traversing the entries of Tr ee; see next / 1. The difference as compared to
theiterator returned by i t er at or/ 1 isthat the first key greater than or equal to Key is returned.

keys(Tree) -> [Key]
Types:

Tree = tree(Key, Value :: term())
Returnsthe keysin Tr ee asan ordered list.

largest(Tree) -> {Key, Value}
Types:
Tree = tree(Key, Value)

Returns { Key, Val ue}, where Key isthelargest key in Tr ee, and Val ue isthe value associated with this key.

Assumes that the tree is not empty.

lookup(Key, Tree) -> none | {value, Value}

Types.
Tree = tree(Key, Value)

Looksup Key inTr ee. Returns{ val ue, Val ue}, or none if Key isnot present.

map (Function, Treel) -> Tree2
Types.

216 | Ericsson AB. All Rights Reserved.: STDLIB

gb_trees

Function = fun((K :: Key, V1 :: Valuel) -> V2 :: Value2)
Treel = tree(Key, Valuel)
Tree2 = tree(Key, Value2)

Maps function F(K, V1) -> V2 to all key-value pairs of tree Tr ee 1. Returns a new tree Tr ee2 with the same set of
keysas Tr eel and the new set of values V2.

next(Iterl) -> none | {Key, Value, Iter2}
Types.
Iterl = Iter2 = iter(Key, Value)

Returns{ Key, Val ue, |ter2},whereKey isthesmallest key referred to by iterator | t er 1, and | t er 2 isthe
new iterator to be used for traversing the remaining nodes, or the atom none if no nodes remain.

size(Tree) -> integer() >= 0
Types:

Tree = tree()
Returns the number of nodesin Tr ee.

smallest(Tree) -> {Key, Value}
Types.
Tree = tree(Key, Value)

Returns{ Key, Val ue}, whereKey isthesmallest key in Tr ee, and Val ue isthe value associated with this key.
Assumes that the tree is not empty.

take largest(Treel) -> {Key, Value, Tree2}
Types.
Treel = Tree2 = tree(Key, Value)

Returns{ Key, Val ue, Tree2},whereKey isthelargestkeyinTreel, Val ue isthevalueassociated with this
key, and Tr ee2 isthis tree with the corresponding node deleted. Assumes that the tree is not empty.

take smallest(Treel) -> {Key, Value, Tree2}
Types:
Treel = Tree2 = tree(Key, Value)

Returns { Key, Val ue, Tree?2}, whereKey isthesmallest key in Tr eel, Val ue isthe value associated with
thiskey, and Tr ee2 isthis tree with the corresponding node deleted. Assumes that the tree is not empty.

to list(Tree) -> [{Key, Value}l]
Types:
Tree = tree(Key, Value)
Converts atree into an ordered list of key-value tuples.

update(Key, Value, Treel) -> Tree2
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 217

gb_trees

Treel = Tree2 = tree(Key, Value)

Updates Key to value Val ue in Tr eel and returns the new tree. Assumes that the key is present in the tree.

values(Tree) -> [Value]
Types:
Tree = tree(Key :: term(), Value)
Returnsthe valuesin Tr ee as an ordered list, sorted by their corresponding keys. Duplicates are not removed.

See Also
dict(3),gb_sets(3)

218 | Ericsson AB. All Rights Reserved.: STDLIB

gen_event

gen_event

Erlang module

This behavior module provides event handling functionality. It consists of a generic event manager process with any
number of event handlers that are added and deleted dynamically.

An event manager implemented using this module has a standard set of interface functions and includes functionality
for tracing and error reporting. It aso fits into an OTP supervision tree. For more information, see OTP Design
Principles.

Each event handler is implemented as a callback module exporting a predefined set of functions. The relationship
between the behavior functions and the callback functionsis as follows:

gen_event module Callback module

gen_event:start
gen event:start monitor
gen_event:start_link ----- > -

gen_event:add handler
gen_event:add sup handler ----- > Module:init/1

gen event:notify
gen_event:sync notify = ----- > Module:handle event/2

gen event:send request
gen event:call ----- > Module:handle call/2

- e > Module:handle info/2
gen_event:delete handler ----- > Module:terminate/2

gen_event:swap handler
gen_event:swap sup handler ----- > Modulel:terminate/2
Module2:init/1

gen_event:which handlers ----- > -
gen event:stop = ----- > Module:terminate/2
- e > Module:code change/3

Aseach event handler isone callback module, an event manager has many callback modulesthat are added and deleted
dynamically. gen_event istherefore moretolerant of callback module errors than the other behaviors. If a callback
function for an installed event handler fails with Reason, or returns a bad value Ter m the event manager does not
fail. It deletesthe event handler by calling callback function Modul e: t er mi nat e/ 2, givingasargument{ er r or ,
{'EXIT , Reason}} or{error, Tern}, respectively. No other event handler is affected.

A gen_event processhandlessystem messagesasdescribedinsys(3) . Thesys modulecan beused for debugging
an event manager.

Notice that an event manager does trap exit signals automatically.

Thegen_event processcan gointo hibernation (seeer | ang: hi ber nat e/ 3) if acallback function in ahandler
module specifieshi ber nat e initsreturn value. Thiscan be useful if the server is expected to beidlefor along time.
However, use this feature with care, as hibernation implies at least two garbage collections (when hibernating and
shortly after waking up) and is not something you want to do between each event handled by a busy event manager.

Ericsson AB. All Rights Reserved.: STDLIB | 219

gen_event

Notice that when multiple event handlers are invoked, it is sufficient that one single event handler returns a
hi ber nat e regquest for the whole event manager to go into hibernation.

Unless otherwise stated, all functions in this module fail if the specified event manager does not exist or if bad
arguments are specified.

Data Types

handler() = atom() | {atom(), term()}

handler _args() = term()

add handler ret() = ok | term() | {'EXIT', term()}
del handler ret() = ok | term() | {'EXIT', term()}
request id() = term()

A request handle, seesend_r equest / 3 for details.

Exports

add handler(EventMgrRef, Handler, Args) -> Result
Types:
Event Mgr Ref = Nane | {Nane, Node} | {gl obal, d obal Nane} |
{vi a, Modul e, Vi aNanme} | pid()
Name = Node = atom()
G obal Name = ViaNane = term()

Handl er = Modul e | {Mbdul e, I d}
Modul e = atom()
Id = ternm()

Args = term)
Result = ok | {'EXIT' ,Reason} | term()
Reason = term()

Adds anew event handler to event manager Event Myr Ref . The event manager callsModul e: i ni t/ 1 toinitiate
the event handler and itsinternal state.

Event Mgr Ref can be any of the following:

e Thepid

* Nane, if the event manager islocaly registered

« {Nane, Node}, if the event manager is locally registered at another node

« {gl obal, d obal Nane}, if the event manager is globally registered

« {via, Modul e, Vi aNane}, if the event manager is registered through an alternative process registry

Handl er is the name of the callback module Modul e or a tuple { Modul e, | d}, where | d is any term. The

{ Modul e, | d} representation makes it possible to identify a specific event handler when many event handlers use
the same callback module.

Ar gs isany term that is passed as the argument to Modul e: init/ 1.

If Modul e:init/1 returns a correct value indicating successful completion, the event manager adds the event
handler and this function returns ok. If Modul e: i ni t/ 1 failswith Reason or returns{ err or, Reason}, the
event handler isignored and this function returns{' EXI T' , Reason} or { err or, Reason}, respectively.

220 | Ericsson AB. All Rights Reserved.: STDLIB

gen_event

add sup handler(EventMgrRef, Handler, Args) -> Result
Types.

Event Mgr Ref = Nanme | {Nanme, Node} | {gl obal, d obal Nane} |
{vi a, Modul e, Vi aNane} | pid()

Nane = Node = atom()

G obal Name = ViaNane = term()

Handl er = Modul e | {Modul e, | d}

Modul e = atom()

Id = tern()

Args = term)

Result = ok | {'EXIT' ,Reason} | term()
Reason = term()

Adds a new event handler in the same way as add_handl er/ 3, but also supervises the connection between the
event handler and the calling process.

If the calling process later terminates with Reason, the event manager deletes the event handler by calling
Modul e: t er mi nat e/ 2 with { st op, Reason} asargument.

If the wevent handler is deleted later, the event manager sends a message

{gen_event EXI T, Handl er, Reason} tothe calling process. Reason isone of the following:

« normal, if the event handler has been removed because of a call to del ete_handl er/ 3, or
remove_handl er hasbeen returned by a callback function (see below).

e shut down, if the event handler has been removed because the event manager isterminating.

 {swapped, NewHandl er, Pi d}, if the process Pi d has replaced the event handler with another event
handler NewHand! er using acall to swap_handl er/ 3 or swap_sup_handl er/ 3.

e Aterm, if the event handler is removed because of an error. Which term depends on the error.

For a description of the arguments and return values, seeadd_handl er/ 3.

call(EventMgrRef, Handler, Request) -> Result
call(EventMgrRef, Handler, Request, Timeout) -> Result
Types:

Event Mgr Ref = Nane | {Nane, Node} | {gl obal, d obal Nane} |
{vi a, Modul e, Vi aNane} | pid()

Name = Node = atom()

G obal Name = ViaNane = term()
Handl er = Modul e | {Mbdul e, | d}
Modul e = atom()

Id = tern()

Request = term)

Tinmeout = int()>0 | infinity
Result = Reply | {error,Error}

Reply = term()
Error = bad _nodule | {'EXIT' ,Reason} | tern()
Reason = term()

Ericsson AB. All Rights Reserved.: STDLIB | 221

gen_event

Makes asynchronouscall to event handler Handl er installed in event manager Event Myr Ref by sending arequest
and waiting until areply arrivesor atime-out occurs. The event manager callsModul e: handl e_cal | / 2 tohandle
the request.

For a description of Event Myr Ref and Handl er , seeadd_handl er/ 3.
Request isany term that is passed as one of the argumentsto Mbdul e: handl e_cal | / 2.

Ti meout is an integer greater than zero that specifies how many milliseconds to wait for a reply, or the atom
i nfinity towait indefinitely. Defaults to 5000. If no reply is received within the specified time, the function call
fails.

ThereturnvalueRepl y isdefined inthereturn valueof Modul e: handl e_cal | / 2. If thespecified event handler is
not installed, thefunction returns{ er r or , bad_nodul e} . If the callback function failswith Reason or returnsan
unexpected value Ter m thisfunctionreturns{ error, {' EXI T' , Reason}} or{error, Ter n}, respectively.

check response(Msg, RequestId) -> Result
Types:
Msg = term)
Requestld = request _id()
Result = {reply, Reply} | no_reply | {error, Error}
Reply = Error = term)
This function is used to check if a previously received message, for example by r ecei ve or handl e_i nfo/ 2,is
aresult of arequest made with send_r equest / 3. If Msg is areply to the handle Request | d the result of the

request is returned in Repl y. Otherwise returnsno_r epl y and no cleanup is done, and thus the function shall be
invoked repeatedly until areply is returned.

If the specified event handler is not installed, the function returns{ er r or , bad_nodul e} . If the callback function
fails with Reason or returns an unexpected value Ter m this function returns{error, {' EXI T' , Reason}} or
{error, Ter n}, respectively. If the event manager dies before or during the request thisfunctionreturns{ er r or ,
{Reason, Event MgrRef}}.

delete handler(EventMgrRef, Handler, Args) -> Result

Types:
Event Mgr Ref = Nane | {Nane, Node} | {gl obal, d obal Nane} |
{vi a, Modul e, Vi aNanme} | pid()

Name = Node = atom()

G obal Name = ViaNane = term)

Handl er = Modul e | {Mbdul e, | d}

Modul e = atom()

Id = tern()

Args = term)

Result = term() | {error,nodule not found} | {'EXIT , Reason}
Reason = term()

Deletes an event handler from event manager Event Mgr Ref . The event manager calls Modul e: t er mi nat e/ 2
to terminate the event handler.

For adescription of Event Mgr Ref and Handl er , seeadd_handl er/ 3.
Ar gs isany term that is passed as one of the argumentsto Mbdul e: t er m nat e/ 2.

222 | Ericsson AB. All Rights Reserved.: STDLIB

gen_event

The return value is the return value of Modul e: t er mi nat e/ 2. If the specified event handler is not installed, the
functionreturns{ er r or, nodul e_not _f ound} . If the callback function fails with Reason, the function returns
{'EXIT , Reason}.

notify(EventMgrRef, Event) -> ok
sync_notify(EventMgrRef, Event) -> ok
Types.
Event Mgr Ref = Nane | {Nane, Node} | {gl obal, d obal Nane} |
{vi a, Modul e, Vi aNane} | pid()
Name = Node = aton()
G obal Name = ViaNane = term()
Event = tern()

Sends an event notification to event manager EventMgrRef. The event manager calls
Modul e: handl e_event / 2 for each installed event handler to handle the event.

not i f y/ 2 isasynchronous and returnsimmediately after the event notification has been sent. sync_noti fy/ 2is
synchronousin the sense that it returns ok after the event has been handled by all event handlers.

For adescription of Event Myr Ref , seeadd_handl er/ 3.
Event isany term that is passed as one of the argumentsto Modul e: handl e_event/ 2.

not i fy/ 1 doesnot fail even if the specified event manager does not exist, unlessit is specified as Nane.

receive response(RequestId, Timeout) -> Result
Types:
Requestld = request _id()
Reply = term()
Ti meout = timeout ()
Result = {reply, Reply} | timeout | {error, Error}
Reply = Error = term()
This function is used to receive for a reply of a request made with send_r equest / 3 to the event manager. This
function must be called from the same process from which send_r equest / 3 was made.

Ti meout isan integer greater then or equal to zero that specifies how many millisecondsto wait for an reply, or the
atomi nf i ni ty towait indefinitely. If no reply isreceived within the specified time, the function returnst i meout .
Assuming that the server executes on a node supporting aliases (introduced in OTP 24) no response will be received
after atimeout. Otherwise, a garbage response might be received at alater time.

Thereturn value Repl y isdefined in the return value of Modul e: handl e_cal | / 3.

If the specified event handler is not installed, the function returns{ er r or , bad_nodul e} . If the callback function
fails with Reason or returns an unexpected value Ter m this function returns{ error, {' EXI T' , Reason}} or
{error, Ter n}, respectively. If the event manager dies before or during the request thisfunction returns{ er r or ,
{Reason, Event MgrRef}}.

The difference between wait _response() and recei ve_response() is that recei ve_response()
abandons the request at timeout so that a potential future responseisignored, whilewai t _r esponse() does not.

send request(EventMgrRef, Handler, Request) -> RequestId

Types:
Event Mgr Ref = Nane | {Nane, Node} | {gl obal, d obal Nane}

Ericsson AB. All Rights Reserved.: STDLIB | 223

gen_event

| {via, Modul e, ViaNane} | pid()
Node = atom()
G obal Name = ViaNane = term()
Handl er = Modul e | {Modul e, I d}
Modul e = atom()
Id = tern()
Request = term))
Requestld = request _id()
Sends a request to event handler Handl er installed in event manager Event Mgr Ref and returns a

handle Request|ld. The return value Request|ld shal later be used with recei ve_response/ 2,
wai t _response/ 2,or check_response/ 2 in the same process to fetch the actual result of the request.

The cal
gen_event:wait_response(gen_event:send_request (Event Myr Ref, Handl er, Request),

Ti neout) canbeseenasequivalenttogen_event : cal | (Event Myr Ref , Handl er, Request, Ti neout),
ignoring the error handling.

The event manager calls Modul e: handl e_cal | / 2 to handle the request.
Request isany term that is passed as one of the argumentsto Modul e: handl e_cal | / 3.

start() -> Result
start(EventMgrName | Options) -> Result
start(EventMgrName, Options) -> Result
Types:
Event Mgr Nane = {l ocal , Nane} | {gl obal, d obal Nane} | {via, Mbdul e, Vi aNane}
Name = atom()
d obal Nanme = ViaNane = tern()
Options = [Option]
Option = {debug, Dbgs} | {tineout, Tine} |
{hi bernate_after, H bernateAfterTi neout} | {spawn_opt, SOpt s}
Dbgs = [Dbg]

Dbg = trace | log | statistics | {log to file,FileNane} | {install,
{Func, FuncsSt at e} }

SOpts = [term)]
Result = {ok,Pid} | {error,{already_started, Pid}}
Pid = pid()

Creates a stand-alone event manager process, that is, an event manager that is not part of a supervision tree and thus
has no supervisor.

For a description of the arguments and return values, seest art _| i nk/ 0, 1.

start link() -> Result

start _link(EventMgrName | Options) -> Result

start link(EventMgrName, Options) -> Result

Types.
Event Mgr Nane = {l ocal, Nane} | {gl obal, d obal Nane} | {vi a, Modul e, Vi aNane}
Name = atom()

224 | Ericsson AB. All Rights Reserved.: STDLIB

gen_event

d obal Nane = ViaNane = term)
Options = [Option]
Option = {debug, Dbgs} | {tineout, Tine} |
{hi bernate_after, H bernateAfterTi neout} | {spawn_opt, SOpt s}
Dbgs = [Dbg]
Dbg = trace | log | statistics | {log to file, FileNane} | {install,
{Func, FuncsSt at e} }

SOpts = [tern()]
Result = {ok,Pid} | {error,{already_started, Pid}}
Pid = pid()

Creates an event manager process as part of a supervision tree. The function isto be called, directly or indirectly, by
the supervisor. For example, it ensures that the event manager is linked to the supervisor.

If Event Mgr Nane={| ocal , Nane}, the event manager isregistered locally as Nane usingr egi st er/ 2.

If Event Mgr Nanme={ gl obal , A obal Nane}, the event manager is registered globally as G obal Nane
using gl obal : regi st er _nane/ 2. If no nameis provided, the event manager is not registered.

If Event Mgr Nane={vi a, Mbdul e, Vi aNane}, the event manager registers with the registry represented
by Modul e. The Modul e calback isto export the functionsr egi st er _nane/ 2, unr egi st er _nane/ 1,
wher ei s_nane/ 1, and send/ 2, which are to behave as the corresponding functions in gl obal . Thus,
{vi a, gl obal , d obal Nane} isavalid reference.

If option { hi ber nat e_after, H bernat eAf t er Ti meout } is present, the gen_event process awaits

any messagefor Hi ber nat eAf t er Ti meout milliseconds and if no messageisreceived, the process goesinto
hibernation automatically (by calling pr oc_I i b: hi ber nat e/ 3).

If the event manager is successfully created, the function returns { ok, Pi d}, where Pi d is the pid of the
event manager. If a process with the specified Event Myr Nane exists aready, the function returns { er r or,
{al ready_started, Pi d}}, wherePi d isthe pid of that process.

start monitor() -> Result

start monitor(EventMgrName | Options) -> Result
start monitor(EventMgrName, Options) -> Result
Types:

Event Mgr Nane = {l ocal , Nane} | {gl obal, d obal Nane} | {via, Modul e, Vi aNane}
Nane = aton()
G obal Name = ViaNane = term()
Options = [Option]
Option = {debug, Dbgs} | {tineout, Tine} |
{hi bernate_after, H bernateAfterTi meout} | {spawn_opt, SOpt s}
Dbgs = [Dbg]
Dbg = trace | log | statistics | {log_ to file,FileNane} | {install,
{Func, FuncSt at e} }

SOpts = [term)]
Result = {ok,{Pid,Mon}} | {error,{already_started, Pid}}
Pid = pid()

Creates a stand-alone event manager process, that is, an event manager that is not part of a supervision tree (and thus
has no supervisor) and atomically sets up a monitor to the newly created process.

Ericsson AB. All Rights Reserved.: STDLIB | 225

gen_event

For adescription of theargumentsand return values, seest art _| i nk/ 0, 1. Notethat the return value on successful
start differsfrom st art _| i nk/ 3, 4. start _noni t or/ 3, 4 will return { ok, { Pi d, Mon} } where Pi d isthe
process identifier of the process, and Mon is areference to the monitor set up to monitor the process. If the start is not
successful, the caller will be blocked until the DOWN message has been received and removed from the message queue.

stop(EventMgrRef) -> ok
stop(EventMgrRef, Reason, Timeout) -> ok
Types.
Event Mgr Ref = Nane | {Nane, Node} | {gl obal, d obal Nane} |
{vi a, Modul e, Vi aNane} | pid()
Name = Node = atom()
G obal Name = ViaNane = term()
Reason = term()
Timeout = int()>0 | infinity
Orders event manager Event Mgr Ref to exit with the specifies Reason and waits for it to terminate. Before
terminating, gen_event callsModul e: t er mi nat e(stop, ...) for eachinstaled event handler.

The function returns ok if the event manager terminates with the expected reason. Any other reason than nor nal ,
shut down, or { shut down, Ter n} causes an error report to be issued using | ogger (3) . The default Reason
isnor nal .

Ti meout is an integer greater than zero that specifies how many milliseconds to wait for the event manager to
terminate, or theatomi nf i ni t y towaitindefinitely. Defaultstoi nf i ni t y. If the event manager hasnot terminated
within the specified time, at i meout exception is raised.

If the process does not exist, anopr oc exception is raised.
For adescription of Event Myr Ref , seeadd_handl er/ 3.

swap_handler(EventMgrRef, {Handlerl,Argsl}, {Handler2,Args2}) -> Result
Types:

Event Mgr Ref = Nane | {Nane, Node} | {gl obal, d obal Nane} |

{vi a, Modul e, Vi aNanme} | pid()

Name = Node = atom()

G obal Name = ViaNane = term)

Handl er1 = Handl er2 = Mddul e | {Mdul e, | d}

Modul e = atom()

Id = tern()

Argsl = Args2 = tern()

Result = ok | {error,Error}

Error = {" EXIT', Reason} | tern()

Reason = term()

Replaces an old event handler with anew event handler in event manager Event Myr Ref .
For a description of the arguments, seeadd_handl er/ 3.

First theold event handler Handl er 1 isdeleted. Theevent manager callshMbdul el: t erm nate(Argsl, ...),
where Modul el isthe callback module of Handl er 1, and collects the return value.

226 | Ericsson AB. All Rights Reserved.: STDLIB

gen_event

Then the new event handler Handl er 2 is added and initiated by calling Modul e2: i nit ({Args2, Term}),
where Modul e2 isthe callback module of Handl er 2 and Ter misthereturn value of Modul el: t er m nat e/ 2.
This makesit possible to transfer information from Handl er 1 to Handl er 2.

The new handler is added even if the the specified old event handler is not installed, in which case Ter m=er r or ,
or if Modul el: t er mi nat e/ 2 fails with Reason, in which case Ter m={' EXI T' , Reason} . The old handler
is deleted even if Modul e2: i ni t/ 1 fails.

If there was asupervised connection between Handl er 1 and aprocessPi d, thereisasupervised connection between
Handl er 2 and Pi d instead.

If Modul e2:i ni t/ 1 returns acorrect value, this function returns ok. If Modul e2: i ni t/ 1 fails with Reason
or returns an unexpected value Ter m this function returns{error, {' EXI T' , Reason}} or{error, Ternt,
respectively.

swap_sup_handler(EventMgrRef, {Handlerl,Argsl}, {Handler2,Args2}) -> Result
Types:

Event Mgr Ref = Nane | {Nanme, Node} | {gl obal, d obal Nane} |

{vi a, Modul e, Vi aNane} | pid()

Nane = Node = atom()

G obal Name = ViaNane = term()

Handl erl = Handler 2 = Module | {Modul e, | d}

Modul e = atom()

Id = term()

Argsl = Args2 = ternm()

Result = ok | {error,Error}

Error = {"EXIT',Reason} | term()

Reason = term()

Replaces an event handler in event manager Event Myr Ref in the same way as swap_handl er/ 3, but also
supervises the connection between Handl er 2 and the calling process.

For a description of the arguments and return values, see swap_handl| er/ 3.

wait response(RequestId, Timeout) -> Result
Types:
Requestld = request _id()
Reply = term()
Ti meout = timeout ()
Result = {reply, Reply} | timeout | {error, Error}
Reply = Error = term))
This function is used to wait for a reply of a request made with send_r equest / 3 to the event manager. This
function must be called from the same process from which send_r equest / 3 was made.

Ti meout isaninteger greater then or equal to zero that specifies how many milliseconds to wait for an reply, or the
atomi nfi ni ty towaitindefinitely. If no reply is received within the specified time, the function returnst i meout
and no cleanup is done, and thus the function must be invoked repeatedly until areply is returned.

Thereturn value Repl y isdefined in the return value of Modul e: handl e_cal | / 3.

If the specified event handler is not installed, the function returns{ er r or , bad_nodul e} . If the callback function
fails with Reason or returns an unexpected value Ter m this function returns{ error, {' EXI T' , Reason}} or

Ericsson AB. All Rights Reserved.: STDLIB | 227

gen_event

{error, Ter n}, respectively. If the event manager dies before or during the request thisfunction returns{ er r or ,
{Reason, Event MgrRef}}.

The difference between r ecei ve_r esponse() and wait _response() is that recei ve_response()
abandons the request at timeout so that a potential future responseisignored, whilewai t _r esponse() does not.

which handlers(EventMgrRef) -> [Handler]
Types:
Event Myr Ref = Nane | {Nane, Node} | {gl obal, d obal Nane} |
{vi a, Modul e, Vi aNane} | pid()
Name = Node = atom()
d obal Nane = ViaNane = term()
Handl er = Modul e | {Mdul e, | d}
Modul e = atom()
Id = term()
Returnsalist of al event handlersinstalled in event manager Event Myr Ref .
For a description of Event Myr Ref and Handl er , seeadd_handl er/ 3.

The following functions are to be exported from agen_event calback module.

Exports

Module:code change(OldVsn, State, Extra) -> {ok, NewState}

Types.
advsn = Vsn | {down, Vsn}
Vsn = tern()
State = NewState = term))

Extra = tern()

This callback is optional, so callback modules need not export it. If a release upgrade/downgrade with
Change={advanced, Extra} specified in the . appup file is made when code_change/ 3 isn't
implemented the event handler will crash with an undef error reason.

This function is caled for an instaled event handler that is to update its internal state during
a release upgrade/downgrade, that is, when the instruction {updat e, Modul e, Change, ...}, where
Change={ advanced, Extr a}, isspecifiedinthe. appup file. For moreinformation, see OTP Design Principles.

For an upgrade, O dVsn is Vsn, and for a downgrade, A dVsn is {down, Vsn}. Vsn is defined by the vsn
attribute(s) of the old version of the callback module Modul e. If no such attribute is defined, the version is the
checksum of the Beam file.

St at e istheinternal state of the event handler.
Ext raispassed "asis' fromthe{advanced, Ext r a} part of the update instruction.
The function isto return the updated internal state.

Module:format status(Opt, [PDict, State]) -> Status
Types:

228 | Ericsson AB. All Rights Reserved.: STDLIB

gen_event

Opt
PD ct

normal | termnate
[{Key, Val ue}]

State = term)
Status = term()

This callback is optional, so event handler modules need not export it. If a handler does not export this function,
thegen_event module usesthe handler state directly for the purposes described below.

Thisfunction iscalled by agen_event processin the following situations:

e Oneofsys:get_ status/1, 2isinvokedtogetthegen event status. Opt isset totheatomnor nal for
this case.

e Theevent handler terminates abnormally and gen_event logsan error. Opt isset to theatomt er ni nat e
for this case.

Thisfunctionisuseful for changing theform and appearance of the event handler statefor these cases. An event handler
callback module wishing to change the the sys: get _st at us/ 1, 2 return value as well as how its state appears
in termination error logs, exports an instance of f or mat _st at us/ 2 that returns aterm describing the current state
of the event handler.

PDi ct isthe current value of the process dictionary of gen_event .
St at e istheinternal state of the event handler.

Thefunctionisto return St at us, aterm that change the details of the current state of the event handler. Any termis
allowed for St at us. Thegen_event module uses St at us asfollows:

* Whensys: get_status/1, 2iscaled, gen_event ensuresthat itsreturn value contains St at us in place
of the state term of the event handler.

e When an event handler terminates abnormally, gen_event logs St at us in place of the state term of the event
handler.

Oneusefor thisfunction isto return compact alternative state representationsto avoid that large state terms are printed
inlog files.

Module:handle call(Request, State) -> Result
Types.

Request = term))

State = term)

Result = {ok, Reply, NewState} | {ok, Reply, NewSt at e, hi ber nat e}
| {swap_handl er, Reply, Argsl, NewSt at e, Handl er 2, Ar gs2}
| {renove_handl er, Reply}

Reply = term)

NewState = term()

Argsl = Args2 = term()

Handl er2 = Modul e2 | {Modul e2, | d}
Modul e2 = atom()

Id = tern()

Whenever an event manager receives areguest sent using cal | / 3, 4, thisfunction is called for the specified event
handler to handle the request.

Ericsson AB. All Rights Reserved.: STDLIB | 229

gen_event

Request isthe Request argument of cal | / 3, 4.

St at e isthe internal state of the event handler.

The return values are the same as for Mbdul e: handl e_event/ 2 except that they also contain aterm Repl vy,
which isthe reply to the client asthe return value of cal | / 3, 4.

Module:handle event(Event, State) -> Result

Types:
Event = tern()
State = term))

Result = {ok, NewState} | {ok, NewStat e, hi ber nat e}
| {swap_handl er, Args1, NewSt at e, Handl er 2, Args2} | renove_handl er
NewState = term)
Argsl = Args2 = tern()
Handl er2 = Modul e2 | {Modul e2, | d}
Modul e2 = atom()
Id = tern()

Whenever an event manager receives an event sent using noti fy/ 2 or sync_noti fy/ 2, thisfunction is called
for each installed event handler to handle the event.

Event istheEvent argument of noti fy/ 2/sync_notify/ 2.

St at e isthe internal state of the event handler.

If { ok, NewSt at e} or { ok, NewSt at e, hi ber nat e} isreturned, the event handler remains in the event
manager with the possible updated internal state NewSt at e.

If {ok, NewSt at e, hi ber nat e} is returned, the event manager also goes into hibernation (by calling
proc_lib: hi bernat e/ 3), waiting for the next event to occur. It is sufficient that one of the event handlers
return { ok, NewSt at e, hi ber nat e} for the whole event manager process to hibernate.

If {swap_handl er, Argsl, NewSt at e, Handl er 2, Args2} is returned, the event handler is
replaced by Handl er2 by first caling Mdul e:term nate(Argsl, NewState) and then
Modul e2:init ({Args2, Tern}), where Ter misthe return value of Modul e: t er mi nat e/ 2. For more
information, seeswap_handl er/ 3.

If renove_handl er is returned, the event handler is deleted by cdling
Modul e: t erm nat e(renove_handl er, St ate).

Module:handle info(Info, State) -> Result
Types:

Info = term()
State = term))
Result = {ok, NewState} | {ok, Newst at e, hi ber nat e}
| {swap_handl er, Args1, NewSt at e, Handl er 2, Args2} | renove_handl er
NewState = term()
Argsl = Args2 = tern()
Handl er2 = Modul e2 | {Modul e2, | d}
Modul e2 = atom()
Id = term))

230 | Ericsson AB. All Rights Reserved.: STDLIB

gen_event

This callback is optional, so callback modules need not export it. The gen_event module provides a default
implementation of thisfunction that logs about the unexpected | nf 0 message, dropsit and returns{ ok, St ate}.

This function is called for each installed event handler when an event manager receives any other message than an
event or a synchronous request (or a system message).

I nf 0 isthe received message.

For a description of St at e and possible return values, see Modul e: handl e_event/ 2.

Module:init(InitArgs) -> {ok,State} | {ok,State,hibernate} | {error,Reason}
Types.

InitArgs = Args | {Args, Tern}

Args = Term= term()

State = term()

Reason = term()

Whenever anew event handler is added to an event manager, this function is called to initialize the event handler.

If the event handler is added because of acall to add_handl er/ 3 or add_sup_handl er/ 3,1 ni t Ar gs isthe
Ar gs argument of these functions.

If the event handler replaces another event handler because of a cal to swap_handler/3 or
swap_sup_handl er/ 3, or because of aswap return tuple from one of the other callback functions, | ni t Ar gs
isatuple { Ar gs, Ter n}, where Ar gs is the argument provided in the function call/return tuple and Ter mis the
result of terminating the old event handler, seeswap_handl er/ 3.

If successful, thefunctionreturns{ ok, St at e} or{ ok, St at e, hi ber nat e} , where St at e istheinitial internal
state of the event handler.

If {ok, State, hibernate} is returned, the event manager goes into hibernation (by calling
proc_lib: hi bernat e/ 3), waiting for the next event to occur.

Module:terminate(Arg, State) -> term()

Types:
Arg = Args | {stop, Reason} | stop | renove_handl er
| {error,{'EXIT ,Reason}} | {error, Tern
Args = Reason = Term = term))

This callback is optional, so callback modules need not export it. The gen_event module provides a default
implementation without cleanup.

Whenever an event handler is deleted from an event manager, this function is called. It is to be the opposite of
Modul e: i ni t/ 1 and do any necessary cleaning up.

If the event handler is deleted because of a cal to del ete_handl er/ 3, swap_handl er/ 3, or
swap_sup_handl er/ 3, Ar g isthe Ar gs argument of thisfunction call.

Ar g={ st op, Reason} if the event handler has a supervised connection to a process that has terminated with reason
Reason.

Ericsson AB. All Rights Reserved.: STDLIB | 231

gen_event

Ar g=st op if the event handler is deleted because the event manager is terminating.

The event manager terminates if it is part of a supervision tree and it is ordered by its supervisor to terminate. Even if
itisnot part of asupervision tree, it terminates if it receivesan' EXI T' message from its parent.

Arg=renove_handl er if the event handler is deleted because another callback function has returned
renove_handl er or{renove_handl er, Repl y}.

Arg={error, Ter n} if theevent handler isdeleted because acallback function returned an unexpected value Ter m
orArg={error,{' EXIT , Reason}} if acalback function failed.

St at e istheinternal state of the event handler.

The function can return any term. If the event handler is deleted because of a cal to
gen_event : del et e_handl er/ 3, the return value of that function becomes the return value of this function. If
the event handler is to be replaced with another event handler because of a swap, the return value is passed to the
i ni t function of the new event handler. Otherwise the return valueisignored.

See Also
supervi sor (3),sys(3)

232 | Ericsson AB. All Rights Reserved.: STDLIB

gen_fsm

gen_fsm

Erlang module

Deprecated and replaced by gen_st at em

Migration to gen_statem

Here follows a simple example of turning a gen_fsm into agen_st at em The example comes from the previous
Users Guidefor gen_f sm

Ericsson AB. All Rights Reserved.: STDLIB | 233

gen_fsm

-module(code lock).
-define(NAME, code lock).
%-define (BEFORE_REWRITE, true).

-ifdef (BEFORE_REWRITE).
-behaviour(gen fsm).
-else.

-behaviour(gen statem).
-endif.

-export([start link/1, button/1, stop/0]).

-ifdef (BEFORE_REWRITE).
-export([init/1, locked/2, open/2, handle sync event/4, handle event/3,
handle info/3, terminate/3, code change/4]).
-else.
-export([init/1, callback mode/0, locked/3, open/3, terminate/3, code change/4]).
%% Add callback mode/0
%% Change arity of the state functions
% Remove handle info/3
endif.

oo

-ifdef (BEFORE_REWRITE).
start link(Code) ->

gen fsm:start link({local, ?NAME}, ?MODULE, Code, [1]).
-else.
start link(Code) ->

gen statem:start link({local, ?NAME}, ?MODULE, Code, [1]).
-endif.

-ifdef (BEFORE_REWRITE).
button(Digit) ->

gen_fsm:send event(?NAME, {button, Digit}).
-else.
button(Digit) ->

gen statem:cast(?NAME, {button,Digit}).

%% send event is asynchronous and becomes a cast
-endif.

-ifdef (BEFORE_REWRITE).

stop() ->

gen_fsm:sync send all state event(?NAME, stop).
-else.
stop() ->

gen_statem:call(?NAME, stop).

%% sync_send is synchronous and becomes call

%% all state is handled by callback code in gen statem
-endif.

init(Code) ->
do_lock(),
Data = #{code => Code, remaining => Code},
{ok, locked, Data}.

-ifdef (BEFORE_REWRITE).
-else.
callback mode() ->
state functions.
state functions mode is the mode most similar to
gen _fsm. There is also handle event mode which is
a fairly different concept.
endif.

1P o° o
o® o° o°

-ifdef (BEFORE_REWRITE).
locked({button, Digit}, Data@) ->

234 | Ericsson AB. All Rights Reserved.: STDLIB

gen_fsm

case analyze lock(Digit, Data@) of
{open = StateName, Data} ->
{next_state, StateName, Data, 10000};
{StateName, Data} ->
{next_state, StateName, Data}
end.
-else.
locked(cast, {button,Digit}, Data®) ->
case analyze lock(Digit, Data@) of
{open = StateName, Data} ->
{next_state, StateName, Data, 10000};
{StateName, Data} ->
{next_state, StateName, Data}
end;
locked({call, From}, Msg, Data) ->
handle call(From, Msg, Data);
locked({info, Msg}, StateName, Data) ->
handle info(Msg, StateName, Data).
% Arity differs

for this state you would add a special clause for it above.
endif.

1P P P o
o® o° o°

-ifdef (BEFORE_REWRITE).
open(timeout, State) ->
do lock(),

{next state, locked, State};
open({button, }, Data) ->

{next_state, locked, Data}.
-else.
open(timeout, , Data) ->

do lock(),

{next state, locked, Data};
open(cast, {button, }, Data) ->

{next_state, locked, Data};
open({call, From}, Msg, Data) ->

handle call(From, Msg, Data);
open(info, Msg, Data) ->

handle info(Msg, open, Data).
% Arity differs

for this state you would add a special clause for it above.
endif.

1P P P o
o® o° o°

-ifdef (BEFORE_REWRITE).
handle sync event(stop, From, StateName, Data) ->
{stop, normal, ok, Data}.

handle event(Event, StateName, Data) ->
{stop, {shutdown, {unexpected, Event, StateName}}, Data}.

handle info(Info, StateName, Data) ->

{stop, {shutdown, {unexpected, Info, StateName}}, StateName, Data}.

-else.
-endif.

terminate(Reason, State, Data) ->
State =/= locked andalso do lock(),
ok.

code change(Vsn, State, Data, Extra) ->
{ok, State, Data}.

%% Internal functions

Ericsson AB. All Rights Reserved

All state events are dispatched to handle_call and handle_info help
functions. If you want to handle a call or cast event specifically

All state events are dispatched to handle_call and handle_info help
functions. If you want to handle a call or cast event specifically

.. STDLIB | 235

gen_fsm

-ifdef (BEFORE_REWRITE).
-else.
handle call(From, stop, Data) ->
{stop_and reply, normal, {reply, From, ok}, Data}.

handle info(Info, StateName, Data) ->

{stop, {shutdown, {unexpected, Info, StateName}}, StateName, Data}.
%% These are internal functions for handling all state events
%% and not behaviour callbacks as in gen fsm

endif.
analyze lock(Digit, #{code := Code, remaining := Remaining} = Data) ->
case Remaining of

[Digit] ->

do_unlock(),

{open, Data#{remaining := Code}};
[Digit|Rest] -> % Incomplete

{locked, Data#{remaining := Rest}};
_Wrong ->
{locked, Data#{remaining := Code}}
end.
do lock() ->

io:format("Lock~n", [1).
do_unlock() ->
io:format("Unlock~n", [1).

236 | Ericsson AB. All Rights Reserved.: STDLIB

gen_server

gen_server

Erlang module

This behavior module provides the server of a client-server relation. A generic server process (gen_server)
implemented using this module has a standard set of interface functions and includes functionality for tracing and
error reporting. It also fitsinto an OTP supervision tree. For more information, see section gen_server Behaviour in
OTP Design Principles.

A gen_server process assumes all specific parts to be located in a callback module exporting a predefined set of
functions. The relationship between the behavior functions and the callback functionsis as follows:

gen_server module Callback module

gen_server:start
gen_server:start_monitor
gen _server:start link ----- > Module:init/1

gen server:stop = ----- > Module:terminate/2

gen _server:call
gen_server:send request
gen_server:multi call ----- > Module:handle call/3

gen_server:cast
gen _server:abcast = ----- > Module:handle cast/2

= ocooos > Module:handle info/2

= ocooos > Module:handle continue/2
= ocooos > Module:terminate/2

= ocooos > Module:code change/3

If acallback function fails or returns abad value, thegen_ser ver process terminates.

A gen_server process handles system messages as described in sys(3) . The sys module can be used for
debugging agen_ser ver process.

Notice that agen_ser ver process does not trap exit signals automatically, this must be explicitly initiated in the
callback module.

Unless otherwise stated, all functions in this module fail if the specified gen_ser ver process does not exist or if
bad arguments are specified.

Thegen_ser ver process can go into hibernation (see er | ang: hi ber nat e/ 3) if a callback function specifies
" hi ber nat e' instead of atime-out value. This can be useful if the server is expected to be idle for a long time.
However, use this feature with care, as hibernation implies at least two garbage collections (when hibernating and
shortly after waking up) and is not something you want to do between each call to a busy server.

If the gen_ser ver process needs to perform an action immediately after initialization or to break the execution of
acallback into multiple steps, it canreturn{ cont i nue, Cont i nue} in place of the time-out or hibernation value,
which will immediately invoke the handl e_cont i nue/ 2 callback.

If the gen_server process terminates, eg. as a result of a function in the callback module returning
{st op, Reason, NewSt at e}, an exit signal with thisReason issent to linked processes and ports. See Processes
in the Reference Manual for details regarding error handling using exit signals.

Ericsson AB. All Rights Reserved.: STDLIB | 237

gen_server

Exports

abcast(Name, Request) -> abcast
abcast(Nodes, Name, Request) -> abcast

Types:
Nodes = [Node]
Node = atom()

Name = atom()
Request = term))
Sends an asynchronous request tothegen_ser ver processeslocally registered as Nane at the specified nodes. The

function returns immediately and ignores nodes that do not exist, or where the gen_ser ver Nane does not exist.
Thegen_ser ver processescall Modul e: handl e_cast / 2 to handle the request.

For a description of the arguments, seenul ti _cal | / 2, 3, 4.

call(ServerRef, Request) -> Reply
call(ServerRef, Request, Timeout) -> Reply
Types.
Server Ref = Nane | {Nane, Node} | {gl obal, d obal Nane}
| {via, Modul e, ViaNanme} | pid()
Node = atom()
d obal Nane = ViaNane = term()
Request term))
Ti meout int()>0 | infinity
Reply = term()
Makes a synchronous call to the Ser ver Ref of the gen_ser ver process by sending a request and waiting until

areply arrives or a time-out occurs. The gen_ser ver process calls Modul e: handl e_cal | / 3 to handle the
request.

Ser ver Ref can be any of the following:

e Thepid

 Nane,if thegen_server processislocaly registered

« {Nane, Node}, if thegen_server processislocally registered at another node

« {gl obal, d obal Nane}, if thegen_server processisglobally registered

« {via, Modul e, Vi aNane}, if thegen_ser ver processisregistered through an alternative process registry

Request isany term that is passed asthe first argument to Modul e: handl e_cal | / 3.

Ti meout is an integer greater than zero that specifies how many milliseconds to wait for a reply, or the atom
i nfinity towait indefinitely. Defaults to 5000. If no reply is received within the specified time, the function call
fails. If the caller catches the failure and continues running, and the server isjust late with the reply, it can arrive at
any time later into the message queue of the caller. The caller must in this case be prepared for this and discard any
such garbage messages that are two element tuples with areference as the first element.

The return value Repl y is defined in the return value of Modul e: handl e_cal | / 3.

The call can fail for many reasons, including time-out and the called gen_ser ver process dying before or during
thecall.

238 | Ericsson AB. All Rights Reserved.: STDLIB

gen_server

cast(ServerRef, Request) -> ok
Types.
Server Ref = Nane | {Nane, Node} | {gl obal, d obal Nane}
| {via, Modul e, ViaNane} | pid()
Node = atom()
d obal Nane = ViaNane = term()
Request = term))
Sends an asynchronous request to the Ser ver Ref of the gen_ser ver process and returns ok immediately,

ignoring if the destination node or gen_server process does not exist. The gen_server process cals
Modul e: handl e_cast / 2 to handle the request.

For a description of Ser ver Ref , seecal 1/ 2, 3.
Request isany term that is passed as one of the argumentsto Modul e: handl e_cast/ 2.

check response(Msg, RequestId) -> Result
Types:
Requestld = term))
Result = {reply, Reply} | no_reply | {error, {Reason, ServerRef}}
Msg = Reply = term)
Ti meout = timeout ()
Reason = term()
Server Ref = Nane | {Nane, Node} | {gl obal, d obal Nane}
| {via, Modul e, ViaNane} | pid()
Node = at om()
G obal Name = ViaNane = term()
Thisfunction is used to check if apreviously received message, for example by r ecei ve or handl e_info/ 2,is
aresult of arequest made with send_r equest/ 2. If Msg isareply to the handle Request | d the result of the

request is returned in Repl y. Otherwise returns no_r epl y and no cleanup is done, and thus the function must be
invoked repeatedly until areply is returned.

Thereturn value Repl y isdefined in thereturn value of Modul e: handl e_cal | / 3.
The function returns an error if thegen_ser ver dies before or during this request.

enter loop(Module, Options, State)
enter loop(Module, Options, State, ServerName)
enter loop(Module, Options, State, Timeout)
enter_loop(Module, Options, State, ServerName, Timeout)
Types.
Modul e = atom()
Options = [Option]
Option = {debug, Dbgs} | {hibernate_after, H bernateAfterTi nmeout}
Dbgs = [Dbg]
Dbg = trace | log | statistics
| {log to file,FileNane} | {install,{Func, FuncState}}
State = term()

Ericsson AB. All Rights Reserved.: STDLIB | 239

gen_server

Server Nane = {l ocal, Nane} | {gl obal, d obal Nane}
| {via, Modul e, Vi aNane}
Name = atom()
d obal Nanme = ViaNane = tern()
Timeout =int() | infinity
Makes an existing process into a gen_ser ver process. Does not return, instead the calling process enters the
gen_ser ver processreceiveloop and becomesagen_ser ver process. The process must have been started using

one of the start functionsin proc_1i b(3) . The user is responsible for any initialization of the process, including
registering anamefor it.

This function is useful when a more complex initialization procedure is needed than the gen_ser ver process
behavior provides.

Modul e, Options, and Server Name have the same meanings as when caling start[_link|
_noni tor]/ 3, 4. However, if Ser ver Nane isspecified, the process must have been registered accordingly before
thisfunction is called.

St at e and Ti meout have the same meanings as in the return value of Modul e: i ni t/ 1. The callback module
Modul e does not need to export ani ni t/ 1 function.

Thefunctionfailsif thecalling processwasnot started by apr oc_| i b start function, or if itisnot registered according
to Ser ver Nane.

multi call(Name, Request) -> Result
multi call(Nodes, Name, Request) -> Result
multi call(Nodes, Name, Request, Timeout) -> Result

Types:
Nodes = [Node]
Node = atom()

Name = atom()
Request = term()
Timeout = int()>=0 | infinity
Result = {Repli es, BadNodes}
Replies = [{Node, Repl y}]

Reply = tern()

BadNodes = [Node]
Makes a synchronous call to al gen_server processes localy registered as Nane at the specified nodes

by first sending a request to every node and then waits for the replies. The gen_server process cals
Modul e: handl e_cal I / 3 to handle the request.

Thefunctionreturnsatuple{ Repl i es, BadNodes} ,whereRepl i es isalistof { Node, Repl y} andBadNodes
isalist of node that either did not exist, or wherethe gen_ser ver Nane did not exist or did not reply.

Nodes isalist of node namesto which therequest isto be sent. Default valueisthelist of al known nodes[node() |
nodes()] .

Nane isthe locally registered name of each gen_ser ver process.
Request isany term that is passed asthe first argument to Modul e: handl e_cal | / 3.

Ti meout isan integer greater than zero that specifies how many milliseconds to wait for each reply, or the atom
i nfinity towaitindefinitely. Defaultstoi nfi ni ty. If noreply isreceived from anode within the specified time,
the node is added to BadNodes.

240 | Ericsson AB. All Rights Reserved.: STDLIB

gen_server

When areply Repl y is received from the gen_ser ver process at a node Node, { Node, Repl y} is added to
Repl i es. Repl y isdefined in the return value of Modul e: handl e_cal | / 3.

Warning:

If one of the nodes cannot process monitors, for example, C or Java nodes, and the gen_ser ver processis not
started when the requests are sent, but starts within 2 seconds, this function waits the whole Ti neout , which
may beinfinity.

This problem does not exist if all nodes are Erlang nodes.

To prevent late answers (after the time-out) from polluting the message queue of the caller, a middieman processis
used to do the calls. Late answers are then discarded when they arrive to aterminated process.

receive response(RequestId, Timeout) -> Result
Types:
Requestld = term))
Result = {reply, Reply} | timeout | {error, {Reason, ServerRef}}
Reply = term()
Ti meout = timeout ()
Reason = term()
Server Ref = Nane | {Nane, Node} | {gl obal, d obal Nane}
| {via, Modul e, ViaNane} | pid()
Node = atom()
d obal Nane = ViaNane = term)

Thisfunction isused to receive areply of arequest madewith send_r equest/ 2toagen_ser ver process. This
function must be called from the same process from which send_r equest / 2 was made.

Ti meout isaninteger greater then or equal to zero that specifies how many milliseconds to wait for an reply, or the
atomi nf i ni ty towaitindefinitely. If no reply isreceived within the specified time, the function returnst i meout .
Assuming that the server executes on a node supporting aliases (introduced in OTP 24) no response will be received
after atimeout. Otherwise, a garbage response might be received at a later time.

Thereturn value Repl y isdefined in thereturn value of Modul e: handl e_cal | / 3.
The function returns an error if thegen_ser ver dies before or during this request.

The difference between wait _response() and recei ve_response() is that recei ve_response()
abandons the request at timeout so that a potential future responseisignored, whilewai t _r esponse() doesnot.

reply(Client, Reply) -> ok
Types:
Cient - see bel ow
Reply = term)

This function can be used by agen_ser ver processto explicitly send areply to aclient that calledcal |1 / 2, 3 or
multi _cal l /2,3, 4, when the reply cannot be defined in the return value of Mbdul e: handl e_cal | / 3.

d i ent must be the Fr omargument provided to the callback function. Repl y is any term given back to the client
asthereturnvalueofcal | /2,3 ornul ti _call/2, 3, 4.

Ericsson AB. All Rights Reserved.: STDLIB | 241

gen_server

send request(ServerRef, Request) -> RequestId
Types.
Server Ref = Nane | {Nane, Node} | {gl obal, d obal Nane}
| {via, Modul e, ViaNanme} | pid()
Node = atom()
d obal Nane = ViaNane = term()
Requestld = term))
Tinmeout = int()>0 | infinity
Request = term)
Sendsarequest tothe Ser ver Ref of thegen_ser ver processand returnsahandle Request | d. Thereturn value

Request | d shal later be used withr ecei ve_response/ 2,wait _response/ 2, or check_response/ 2
to fetch the actual result of the request.

The cal gen_server:wait_response(gen_server:send_request (ServerRef, Request),
Ti meout) canbeseenasequivaenttogen_server: cal | (Server, Request, Ti meout) ,ignoring theerror
handling.

Thegen_ser ver processcalsModul e: handl e_cal | / 3 to handle the request.
Ser ver Ref can be any of the following:

e Thepid

 Nane,if thegen_ser ver processislocaly registered

« {Nane, Node}, if thegen_server processislocaly registered at another node

« {gl obal, d obal Nane}, if thegen_ser ver processisglobally registered
« {via, Modul e, Vi aNane}, if thegen_ser ver processisregistered through an alternative process registry

Request isany term that is passed asthe first argument to Modul e: handl e_cal | / 3.

start(Module, Args, Options) -> Result
start(ServerName, Module, Args, Options) -> Result
Types.
ServerNanme = {l ocal, Nane} | {gl obal, d obal Nane}
| {via, Modul e, Vi aNane}
Name = atom()
d obal Nane = ViaNane = term()
Modul e = atom()
Args = term)
Options = [Option]
Option = {debug, Dbgs} | {tineout, Tine} |
{hi bernate_after, H bernateAfterTi meout} | {spawn_opt, SOpt s}
Dbgs = [Dbg]
Dbg = trace | log | statistics | {log_to file,FileNane} | {install,
{Func, FuncsSt at e} }

SOpts = [tern()]
Result = {ok,Pid} | ignore | {error,Error}
Pid = pid()

Error = {already_started,Pid} | term)

242 | Ericsson AB. All Rights Reserved.: STDLIB

gen_server

Creates a standalone gen_ser ver process, that is, agen_ser ver process that is not part of a supervision tree
and thus has no supervisor.

For a description of arguments and return values, seestart _| i nk/ 3, 4.

start link(Module, Args, Options) -> Result
start _link(ServerName, Module, Args, Options) -> Result
Types:

Server Nanme = {l ocal, Nane} | {gl obal, d obal Nane}
| {via, Modul e, Vi aNane}
Name = atom()
G obal Name = ViaNane = term()
Modul e = at om()
Args = term)
Options = [Option]
Option = {debug, Dbgs} | {tineout, Tine} |
{hi bernate_after, H bernateAfterTi meout} | {spawn_opt, SOpt s}
Dbgs = [Dbg]
Dbg = trace | log | statistics | {log_ to file,FileNane} | {install,
{Func, FuncSt at e} }

SOpts = [term)]
Result = {ok,Pid} | ignore | {error,Error}
Pid = pid()

Error = {already_started,Pid} | term))

Createsagen_ser ver process as part of a supervision tree. This function is to be called, directly or indirectly, by
the supervisor. For example, it ensuresthat thegen_ser ver processis linked to the supervisor.

The gen_server process cals Modul e:init/ 1 to initialize. To ensure a synchronized startup procedure,
start _|ink/ 3, 4 doesnot return until Modul e: i ni t/ 1 hasreturned.

If Server Nanme={l ocal , Nane}, the gen_server process is registered locally as Name using
register/ 2.

If Server Name={gl obal , d obal Nane}, the gen_server process id registered globally as
A obal Nare using gl obal : regi st er _nane/ 2 If no nameis provided, thegen_ser ver processisnot
registered.

If Server Nane={vi a, Mbdul e, Vi aNane}, the gen_server process registers with the registry
represented by Modul e. The Modul e calback is to export the functions regi ster nane/ 2,
unregi ster_nane/ 1, wherei s_nane/ 1, and send/ 2, which are to behave like the corresponding
functionsin gl obal . Thus, { vi a, gl obal , d obal Nane} isavalid reference.

Modul e isthe name of the callback module.

Ar gs isany term that is passed as the argument to Modul e: init/ 1.

If option {ti meout, Ti ne} is present, the gen_ser ver process is alowed to spend Ti nme milliseconds
initializing or it isterminated and the start function returns{ error, ti meout }.

If option{ hi ber nat e_aft er, H ber nat eAft er Ti meout } ispresent, thegen_ser ver processawaits
any messagefor Hi ber nat eAf t er Ti meout millisecondsand if no messageisreceived, the process goesinto
hibernation automatically (by calling pr oc_| i b: hi ber nat e/ 3).

If option { debug, Dbgs} is present, the corresponding sys function is called for each item in Dbgs; see
sys(3).

Ericsson AB. All Rights Reserved.: STDLIB | 243

gen_server

« |If option{ spawn_opt, SOpt s} ispresent, SOpt s is passed as option list to the spawn_opt BIF, which is
used to spawn thegen_ser ver process, seespawn_opt / 2.

Using spawn option noni t or isnot allowed, it causes the function to fail with reason badar g.

If the gen_ser ver processis successfully created and initialized, the function returns { ok, Pi d} , where Pi d is
thepid of thegen_ser ver process. If aprocesswith the specified Ser ver Nane existsaready, the function returns
{error,{already_started, Pid}},wherePi d isthe pid of that process.

If Modul e: i nit/ 1 fails with Reason, the function returns { er r or, Reason}. If Modul e: i nit/ 1 returns
{st op, Reason} ori gnor e, the processis terminated and the function returns{ er r or , Reason} ori gnore,
respectively. An exit signal with the same Reason (or nor mal if Modul e: i nit/ 1 returnsi gnor e) is sent to
linked processes and ports.

start monitor(Module, Args, Options) -> Result
start monitor(ServerName, Module, Args, Options) -> Result
Types.
Server Nane = {l ocal, Nane} | {gl obal, d obal Nane}
| {via, Modul e, Vi aNane}
Name = atom()
A obal Nane = ViaName = term()
Modul e = atom()
Args = term)
Options = [Option]
Option = {debug, Dbgs} | {tineout, Tine} |
{hi bernate_after, H bernateAfterTi neout} | {spawn_opt, SOpt s}

Dbgs = [Dbg]
Dbg =trace | log | statistics | {log to file, FileNane} | {install,
{Func, FuncsSt at e} }

SOpts = [tern()]
Result = {ok,{Pid,Mon}} | ignore | {error,Error}
Pid = pid()

Error = {already_started,Pid} | term)

Createsastandalonegen_ser ver process, thatis,agen_ser ver processthat isnot part of asupervision tree (and
thus has no supervisor) and atomically sets up a monitor to the newly created server.

For a description of arguments and return values, seest art _| i nk/ 3, 4. Note that the return value on successful
start differsfromstart _|ink/ 3, 4.start_noni tor/ 3, 4 will return { ok, { Pi d, Mon}} where Pi d isthe
process identifier of the server, and Mon is a reference to the monitor set up to monitor the server. If the start is not
successful, the caller will be blocked until the DOAN message has been received and removed from the message queue.

stop(ServerRef) -> ok
stop(ServerRef, Reason, Timeout) -> ok
Types.
Server Ref = Nane | {Nane, Node} | {gl obal, d obal Nane}
| {via, Modul e, ViaNanme} | pid()

244 | Ericsson AB. All Rights Reserved.: STDLIB

gen_server

Node = atom()
A obal Nane = ViaName = term()
Reason = term)
Timeout = int()>0 | infinity
Orders a generic server to exit with the specified Reason and waits for it to terminate. The gen_ser ver process
calsModul e: t er m nat e/ 2 before exiting.

Thefunction returnsok if the server terminateswith the expected reason. Any other reasonthannor mal , shut down,
or { shut down, Ter n} causesan error report to beissued using | ogger (3) . An exit signal with the same reason
is sent to linked processes and ports. The default Reason isnor mal .

Ti meout isaninteger greater than zero that specifies how many milliseconds to wait for the server to terminate, or
theatomi nf i ni t y towaitindefinitely. Defaultstoi nf i ni ty. If the server has not terminated within the specified
time, at i meout exceptionisraised.

If the process does not exist, anopr oc exception is raised.

wait response(RequestId, Timeout) -> Result
Types.
Requestld = term))
Result = {reply, Reply} | timeout | {error, {Reason, ServerRef}}
Reply = term()
Ti reout = tinmeout ()
Reason = term()
Server Ref = Nane | {Nane, Node} | {gl obal, d obal Nane}
| {via, Modul e, Vi aNanme} | pid()
Node = atom()
d obal Nanme = ViaNane = tern()

Thisfunction is used to wait for areply of arequest madewithsend_r equest/ 2 fromthegen_ser ver process.
This function must be called from the same process fromwhich send_r equest / 2 was made.

Ti meout isaninteger greater then or equal to zero that specifies how many milliseconds to wait for an reply, or the
atomi nfi ni ty towaitindefinitely. If no reply is received within the specified time, the function returnst i meout
and no cleanup is done, and thus the function can be invoked repeatedly until areply is returned.

Thereturn value Repl y isdefined in the return value of Modul e: handl e_cal | / 3.
The function returns an error if thegen_ser ver dies before or during this request.

The difference between r ecei ve_response() and wait_response() is that recei ve_response()
abandons the request at timeout so that a potential future responseisignored, whilewai t _r esponse() doesnot.

The following functions are to be exported from agen_ser ver callback module.

Exports

Module:code change(OldVsn, State, Extra) -> {ok, NewState} | {error, Reason}
Types:
A dvsn = Vsn | {down, Vsn}
Vsn = term))
State = NewState = term()

Ericsson AB. All Rights Reserved.: STDLIB | 245

gen_server

Extra = tern()
Reason = term()

This callback is optional, so callback modules need not export it. If a release upgrade/downgrade with
Change={ advanced, Ext r a} specifiedintheappup fileismadewhencode_change/ 3 isn'timplemented
the process will crash with an undef exit reason.

This function is called by a gen_server process when it is to update its internal state during
a release upgrade/downgrade, that is, when the instruction {updat e, Modul e, Change, ...}, where
Change={ advanced, Ext r a}, isspecifedintheappup file. For moreinformation, see section Release Handling
Instructionsin OTP Design Principles.

For an upgrade, A dVsn is Vsn, and for a downgrade, A dVsn is {down, Vsn}. Vsn is defined by the vsn
attribute(s) of the old version of the callback module Mbdul e. If no such attribute is defined, the version is the
checksum of the Beam file.

St at e istheinternal state of thegen_ser ver process.
Ext raispassed "asis' fromthe{ advanced, Ext r a} part of the update instruction.
If successful, the function must return the updated internal state.

If the function returns{ er r or , Reason}, the ongoing upgrade fails and rolls back to the old release.

Module:format status(Opt, [PDict, State]) -> Status

Types:
Opt = nornal | term nate
PDict = [{Key, Value}]

State = term)
Status = tern()

This callback is optional, so callback modules need not export it. The gen_ser ver module provides a default
implementation of this function that returns the callback module state.

Thisfunction is called by agen_ser ver processin the following situations:

« Oneofsys:get_status/1, 2isinvokedtogetthegen_server status. Opt is set to the atom nor mal .
e« Thegen_server processterminates abnormally and logs an error. Opt issettotheatomt er mi nat e.

This function is useful for changing the form and appearance of thegen_ser ver statusfor these cases. A callback
modulewishing to changethesys: get st at us/ 1, 2 returnvalue, aswell as how its status appearsin termination
error logs, exports an instance of f or mat _st at us/ 2 that returns a term describing the current status of the
gen_ser ver process.

PDi ct isthe current value of the process dictionary of thegen_ser ver process..
St at e istheinternal state of thegen_ser ver process.

Thefunctionisto return St at us, aterm that changes the details of the current state and status of thegen_ser ver
process. There are no restrictions on the form St at us can take, but for the sys: get _st at us/ 1, 2 case (when
Opt isnor mal), the recommended form for the St at us valueis[{data, [{"State", Termn]}], where

246 | Ericsson AB. All Rights Reserved.: STDLIB

gen_server

Ter mprovides relevant details of the gen_ser ver state. Following this recommendation is not required, but it
makes the callback module status consistent with therest of thesys: get _st at us/ 1, 2 return value.

Oneusefor thisfunction isto return compact aternative state representationsto avoid that large state terms are printed
inlog files.

Module:handle call(Request, From, State) -> Result
Types:
Request = term)
From = {pid(), Tag}
State = term)
Result = {reply, Reply, NewState} | {reply, Reply, NewSt at e, Ti neout }
| {reply, Reply, NewSt at e, hi ber nat e}
| {reply, Reply, NewSt at e, {conti nue, Conti nue}}
| {noreply, NewState} | {noreply, NewSt at e, Ti meout }
| {noreply, NewsSt at e, hi ber nat e}
| {noreply, NewSt at e, { conti nue, Conti nue}}
| {stop, Reason, Reply, NewState} | {stop, Reason, NewSt at e}
Reply = term()
NewState = term)
Timeout = int()>=0] infinity
Continue = term()
Reason = term)

Whenever agen_ser ver processreceivesarequest sentusingcal 1 /2, 3ormul ti _cal | /2, 3, 4, thisfunction
is called to handle the request.

Request isthe Request argument providedtocal | ornul ti _call.
Fromisatuple{ Pi d, Tag}, where Pi d isthe pid of the client and Tag is a unique tag.
St at e istheinternal state of thegen_ser ver process.

« If {reply, Reply, NewSt at e} is returned, {reply, Reply, NewSt at e, Ti neout } or
{reply, Reply, NewSt at e, hi ber nat e}, Repl y isgiven back to Fr omasthereturnvalueofcal | / 2, 3
or included in thereturn value of mul ti _cal 1/ 2, 3, 4. Thegen_ser ver process then continues executing
with the possibly updated internal state NewSt at e.

For adescription of Ti neout and hi ber nat e, seeMbdul e: i nit/ 1.

e |If {noreply, NewsSt at e} is returned, {noreply, Newst at e, Ti meout }, or
{norepl y, NewSt at e, hi ber nat e} ,thegen_ser ver processcontinuesexecutingwith NewSt at e. Any
reply to Fr ommust be specified explicitly using r epl y/ 2.

 If{stop, Reason, Repl y, NewSt at e} isreturned, Repl y isgiven back to Fr om

* If{stop, Reason, NewSt at e} isreturned, any reply to Fr ommust be specified explicitly using r epl y/ 2.
Thegen_ser ver processthen callsModul e: t er mi nat e(Reason, NewSt at e) and terminates.

Module:handle cast(Request, State) -> Result
Types:
Request = term))
State = term))
Result = {noreply, NewState} | {noreply, NewSt at e, Ti neout }

Ericsson AB. All Rights Reserved.: STDLIB | 247

gen_server

| {noreply, NewsSt at e, hi ber nat e}
| {noreply, NewSt at e, { conti nue, Conti nue}}
| {stop, Reason, NewsSt at e}

NewState = term)

Timeout = int()>=0 | infinity

Continue = term)

Reason = term()

Whenever agen_ser ver process receives arequest sent using cast/ 2 or abcast/ 2, 3, thisfunction is called
to handle the request.

For a description of the arguments and possible return values, see Modul e: handl e_cal | / 3.

Module:handle continue(Continue, State) -> Result
Types:
Continue = term)
State = term)
Result = {noreply, NewState} | {noreply, NewSt at e, Ti neout }
| {noreply, NewSt at e, hi ber nat e}
| {noreply, NewSt at e, {conti nue, Conti nue}}
| {stop, Reason, NewsSt at e}
NewState = term()

Timeout = int()>=0] infinity
Continue = term()
Reason = normal | tern()

Thiscallback isoptional, so callback modulesneed to export it only if they return{ cont i nue, Cont i nue} from
another callback. If continue is used and the callback is not implemented, the process will exit with undef error.

Thisfunctioniscalledby agen_ser ver processwhenever apreviouscallback returns{ cont i nue, Conti nue}.
handl e_cont i nue/ 2 isinvoked immediately after the previous callback, which makes it useful for performing
work after initialization or for splitting thework in acallback in multiple steps, updating the process state along the way.

For a description of the other arguments and possible return values, see Modul e: handl e_cal | / 3.

Module:handle info(Info, State) -> Result
Types.
Info = tinmeout | term)
State = term))
Result = {noreply, NewState} | {noreply, NewSt at e, Ti neout }
| {noreply, NewSt at e, hi ber nat e}
| {noreply, NewSt at e, { conti nue, Conti nue}}
| {stop, Reason, NewSt at e}
NewState = term()
Timeout = int()>=0 | infinity
Reason = normal | term()

248 | Ericsson AB. All Rights Reserved.: STDLIB

gen_server

This callback is optional, so callback modules need not export it. The gen_ser ver module provides a default
implementation of this function that logs about the unexpected | nf 0 message, dropsit and returns{ nor epl vy,
State}.

Thisfunctioniscalled by agen_ser ver processwhen atime-out occurs or when it receives any other message than
a synchronous or asynchronous request (or a system message).

I nf o iseither theatomt i meout , if atime-out has occurred, or the received message.
For a description of the other arguments and possible return values, see Modul e: handl e_cal | / 3.

Module:init(Args) -> Result
Types.
Args = term)
Result = {ok,State} | {ok,State, Tinmeout} | {ok, State, hi bernate}

| {ok, State,{continue, Continue}} | {stop, Reason} | ignore
State = term)
Timeout = int()>=0] infinity

Reason = term()

Whenever agen_ser ver processisstartedusingstart/ 3, 4,start_nonitor/ 3, 4,orstart _|ink/3, 4,
thisfunction is called by the new process to initialize.

Ar gs isthe Ar gs argument provided to the start function.

If the initialization is successful, the function is to return {ok, State}, {ok, State, Ti neout},
{ok, St at e, hi bernat e}, or {ok, State, {continue, Conti nue}} where St at e isthe interna state of
thegen_ser ver process.

If an integer time-out value is provided, a time-out occurs unless a request or a message is received within
Ti meout milliseconds. A time-out is represented by the atom ti meout, which is to be handled by the
Modul e: handl e_i nf o/ 2 callback function. The atom i nfi ni ty can be used to wait indefinitely, this is the
default value.

If hi ber nat e is specified instead of atime-out value, the process goes into hibernation when waiting for the next
message to arrive (by calling pr oc_I i b: hi ber nat e/ 3).

If { conti nue, Cont i nue} isspecified, the process will execute the Modul e: handl e_cont i nue/ 2 callback
function, with Cont i nue asthe first argument.

If the initialization fails, the function is to return { st op, Reason}, where Reason isany term, or i gnor e. An
exit signal with this Reason (or with reason nor mal if i gnor e isreturned) is sent to linked processes and ports,
notably to the process starting the gen_server whenst art _| i nk/ 3, 4 isused.

Module:terminate(Reason, State)

Types.
Reason = nornmal | shutdown | {shutdown,tern()} | term))
State = term))

Ericsson AB. All Rights Reserved.: STDLIB | 249

gen_server

This callback is optional, so callback modules need not export it. The gen_ser ver module provides a default
implementation without cleanup.

This function is called by a gen_server process when it is about to terminate. It is to be the opposite of
Modul e: i ni t/ 1 and do any necessary cleaning up. When it returns, the gen_ser ver process terminates with
Reason. Thereturn value isignored.

Reason isaterm denoting the stop reason and St at e isthe internal state of thegen_ser ver process.

Reason depends on why the gen_ser ver process is terminating. If it is because another callback function has
returned astop tuple{ st op, . . }, Reason hasthevalue specified in that tuple. If it is because of afailure, Reason
isthe error reason.

If thegen_ser ver processis part of a supervision tree and is ordered by its supervisor to terminate, this function
is called with Reason=shut down if the following conditions apply:

* Thegen_server process has been set to trap exit signals.

e The shutdown strategy as defined in the child specification of the supervisor is an integer time-out value, not
brutal _kill.

Even if thegen_ser ver processis not part of a supervision tree, this function is called if it receivesan' EXI T'
message from its parent. Reason isthesameasinthe' EXI T' message.

Otherwise, thegen_ser ver processterminatesimmediately.

Notice that for any other reason than nor mal , shut down, or { shut down, Ter n} , thegen_ser ver processis
assumed to terminate because of an error and an error report isissued using | ogger (3) .

When the gen_server process exits, an exit signal with the same reason is sent to linked processes and ports.

See Also
gen_event (3),gen_staten(3),proc_lib(3),supervisor(3),sys(3)

250 | Ericsson AB. All Rights Reserved.: STDLIB

gen_statem

gen_statem

Erlang module

gen_st at emprovides ageneric state machine behaviour that for new code replacesits predecessor gen_f smsince
Erlang/OTP 20.0. Thegen_f smbehaviour remainsin OTP "asis".

If you are new to gen_statem and want an overview of concepts and operation the section
gen_st at emBehaviour located in the User's Guide OTP Design Principles is recommended to read before this
reference manual, possibly after the Description section you are reading here.

Thisreference manual contains type descriptions generated from typesin thegen_st at emsource code, so they are
correct. However, the generated descriptions also reflect the type hierarchy, which sometimes makes it hard to get a
good overview. If so, seethe section gen_st at emBehaviour in the OTP Design Principles User's Guide.

* Thisbehavior appeared in Erlang/OTP 19.0.

* InOTP19.1 a backwards incompatible change of the return tuple from Modul e: i ni t / 1 was made and the
mandatory callback function Modul e: cal | back_node/ 0 was introduced.

* In OTP 20.0 generic time-outs were added.
* InOTP 22.1time-out content updat e and explicit time-out cancel were added.

* In OTP 22.3 the possibility to change the callback module with actions change_cal | back_nodul e,
push_cal | back_nodul e and pop_cal | back_nodul e, was added.

gen_st at emhas got the same features that gen_f smhad and adds some really useful:

* Co-located state code

* Arbitrary term state

e Event postponing

» Sdf-generated events

o Statetime-out

e Multiple generic named time-outs
* Absolute time-out time

e Automatic state enter calls

* Reply from other state than the request, sys traceable
e Multiplesys traceablereplies

e Changing the callback module

Two callback modes are supported:

e Onefor finite-state machines (gen_f smlike), which requires the state to be an atom and uses that state as the
name of the current callback function.

* Onethat alowsthe state to be any term and that uses one callback function for all states.

The callback model(s) for gen_st at emdiffers from the onefor gen_f sm but it is till fairly easy to rewrite from
gen_f smtogen_st atem

Ericsson AB. All Rights Reserved.: STDLIB | 251

gen_statem

A generic state machine server process (gen_st at em) implemented using this module has a standard set of interface
functions and includes functionality for tracing and error reporting. It also fitsinto an OTP supervision tree. For more
information, see OTP Design Principles.

A gen_st at emassumesall specific partsto belocated in a callback module exporting a predefined set of functions.
The relationship between the behavior functions and the callback functionsis as follows:

gen_statem module Callback module

gen statem:start
gen_statem:start_monitor
gen statem:start link ----- > Module:init/1

Server start or code change
----- > Module:callback mode/0

gen statem:stop = ----- > Module:terminate/3

gen statem:call

gen statem:cast

gen_statem:send request

erlang:send

erlang:'!" ----- > Module:StateName/3
Module:handle event/4

- > Module:terminate/3
- > Module:code change/4

Events are of different types, so the callback functions can know the origin of an event and how to respond.

If acallback function fails or returns abad value, thegen_st at emterminates, unless otherwise stated. However, an
exception of classt hr owis not regarded as an error but asavalid return from all callback functions.

The state callback for a specific statein agen_st at emis the callback function that is called for al eventsin this
state. It is selected depending on which callback mode that the callback module defines with the callback function
Modul e: cal | back_node/ 0.

When the callback modeisst at e_f unct i ons, the state must be an atom and is used as the state callback name;
seeMbdul e: St at eNane/ 3. Thisco-locatesall codefor aspecific statein onefunctionasthegen_st at emengine
branches depending on state name. Note the fact that the callback function Modul e: t er m nat e/ 3 makesthe state
namet er m nat e unusablein this mode.

When the callback mode ishandl e_event functi on, the state can be any term and the state callback name
isMbdul e: handl e_event / 4. Thismakesit easy to branch depending on state or event as you desire. Be careful
about which events you handle in which states so that you do not accidentally postpone an event forever creating an
infinite busy loop.

When gen_st at emreceives aprocess messageit is converted into an event and the state callback is called with the
event astwo arguments: type and content. When the state callback has processed theevent it returnstogen_st at em
which does a state transition. If this state transition isto a different state, that is: Next State =/= State, it
isastate change.

The state callback may return transition actions for gen_st at emto execute during the state transition, for
exampletoreplytoagen_statemcal 1/ 2, 3.

One of the possible transition actionsis to postpone the current event. Then it is not retried in the current state. The
gen_st at emengine keeps a queue of events divided into the postponed events and the events still to process. After
a state change the queue restarts with the postponed events.

252 | Ericsson AB. All Rights Reserved.: STDLIB

gen_statem

The gen_st at emevent queue model is sufficient to emulate the normal process message queue with selective
receive. Postponing an event corresponds to not matching it in a receive statement, and changing states corresponds
to entering a new receive statement.

The state callback can insert events using the transition actionsnext _event and such an event isinserted in the
event queue as the next to call the state callback with. That is, asif it is the oldest incoming event. A dedicated
event _type() i nternal canbe used for such events making them impossible to mistake for external events.

Inserting an event replaces the trick of calling your own state handling functions that you often would have to resort
toin, for example, gen_f smto force processing an inserted event before others.

The gen_st at emengine can automatically make a specialized call to the state callback whenever a new state
is entered; see st at e_ent er (). Thisis for writing code common to all state entries. Another way to do it is
to explicitly insert an event at the state transition, and/or to use a dedicated state transition function, but that is
something you will have to remember at every state transition to the state(s) that need it.

If youingen_st at em for example, postpone an event in one state and then call another state callback of yours,
you have not done astate change and hencethe postponed event isnot retried, whichislogical but can be confusing.

For the details of astatetransition, seetypet r ansi ti on_option().

A gen_st at emhandles system messages as described in sys. The sys module can be used for debugging a
gen_statem

Notice that agen_st at emdoes not trap exit signals automatically, this must be explicitly initiated in the callback
module (by callingprocess_flag(trap_exit, true).

Unless otherwise stated, all functions in this module fail if the specified gen_st at emdoes not exist or if bad
arguments are specified.

Thegen_st at emprocesscangointohibernation; seepr oc_| i b: hi ber nat e/ 3. Itisdonewhenastatecallback
or Modul e: i ni t/ 1 specifies hi ber nat e in the returned Act i ons list. This feature can be useful to reclaim
process heap memory while the server is expected to be idle for along time. However, use this feature with care, as
hibernation can be too costly to use after every event; seeer | ang: hi ber nat e/ 3.

Thereisalso aserver start option{ hi bernate_after, Tinmeout} forstart/3,4,start_nonitor/ 3,4,
start _link/3,4o0renter_|oop/4,5,6,that may beused to automatically hibernate the server.

If the gen_st at em process terminates, eg. as a result of a function in the callback module returning
{st op, Reason}, an exit signal with this Reason is sent to linked processes and ports. See Processes in the
Reference Manual for details regarding error handling using exit signals.

Example

Thefollowing example shows asimple pushbutton model for atoggling pushbutton implemented with callback mode
stat e_functi ons. You can push the button and it repliesif it went on or off, and you can ask for a count of how
many times it has been pushed to switch on.

The following is the complete callback module file pushbut t on. erl ;

Ericsson AB. All Rights Reserved.: STDLIB | 253

gen_statem

-module(pushbutton).
-behaviour(gen statem).

-export([start/0,push/0,get count/0,stop/0]).
-export([terminate/3,code change/4,init/1,callback mode/0]).
-export([on/3,0ff/3]).

name() -> pushbutton statem. % The registered server name

%% API. This example uses a registered name name()
%% and does not link to the caller.
start() ->

gen statem:start({local,name()}, ?MODULE, [1, []).
push() ->

gen_statem:call(name(), push).
get count() ->

gen_statem:call(name(), get_count).
stop() ->

gen statem:stop(name()).

%% Mandatory callback functions
terminate(Reason, State, Data) ->
void.
code change(Vsn, State, Data, Extra) ->
{ok,State,Data}.
init([]) ->
%% Set the initial state + data. Data is used only as a counter.
State = off, Data = 0,
{ok,State,Data}.
callback mode() -> state functions.

%%% State callback(s)

off({call,From}, push, Data) ->

%% Go to 'on', increment count and reply

%% that the resulting status is 'on'

{next state,on,Data+1, [{reply,From,on}]};
off(EventType, EventContent, Data) ->

handle event(EventType, EventContent, Data).

on({call,From}, push, Data) ->
%% Go to 'off' and reply that the resulting status is 'off'
{next state,off,Data, [{reply,From,off}]};

on(EventType, EventContent, Data) ->
handle event(EventType, EventContent, Data).

%% Handle events common to all states
handle event({call,From}, get count, Data) ->
%% Reply with the current count
{keep state,Data,[{reply,From,Data}1};
handle event(, , Data) ->

%% Ignore all other events
{keep state,Data}.

Thefollowing is a shell session when running it:

254 | Ericsson AB. All Rights Reserved.: STDLIB

gen_statem

1> pushbutton:start().

{ok,<0.36.0>}

2> pushbutton:get count().

0

3> pushbutton:push().

on

4> pushbutton:get count().

1

5> pushbutton:push().

off

6> pushbutton:get count().

1

7> pushbutton:stop().

ok

8> pushbutton:push().

** exception exit: {noproc,{gen statem,call, [pushbutton statem,push,infinity]}}
in function gen:do for proc/2 (gen.erl, line 261)
in call from gen statem:call/3 (gen statem.erl, line 386)

To compare styles, herefollows the same example using callback modehandl e_event _f uncti on, or rather the
code to replace after functioni ni t / 1 of thepushbut t on. er| examplefile above:

callback mode() -> handle event function.
%%% state callback(s)

handle event({call,From}, push, off, Data) ->
%% Go to 'on', increment count and reply
%% that the resulting status is 'on'
{next _state,on,Data+1,[{reply,From,on}1};
handle event({call,From}, push, on, Data) ->
%% Go to 'off' and reply that the resulting status is 'off'
{next state,off,Data, [{reply,From,off}1};

o°
o°

%% Event handling common to all states
handle event({call,From}, get count, State, Data) ->
%% Reply with the current count
{next _state,State,Data, [{reply,From,Data}]};
handle event(, , State, Data) ->
%% Ignore all other events
{next state,State,Data}.

Data Types

server name() =
{global, GlobalName :: term()} |
{via, RegMod :: module(), Name :: term()} |
{local, atom()}

Name specification to use when startingagen_st at emserver. Seestart _|i nk/ 3 andserver _ref () below.

server _ref() =
pid() |
(LocalName :: atom()) |
{Name :: atom(), Node :: atom()} |
{global, GlobalName :: term()} |
{via, RegMod :: module(), ViaName :: term()}

Server specification to use when addressing agen_st at emserver. Seecal | / 2 and ser ver _name() above.

Ericsson AB. All Rights Reserved.: STDLIB | 255

gen_statem

It can be:
pid() | Local Nane

Thegen_st at emislocally registered.
{ Nane, Node}

Thegen_st at emislocally registered on another node.
{gl obal , d obal Nane}

Thegen_st at emisglobaly registered in gl obal .
{vi a, Reghbd, Vi aNane}

The gen_st at emisregistered in an alternative process registry. The registry callback module Reghbd is to
export functions r egi st er _nane/ 2, unr egi st er _nane/ 1, wherei s_nane/ 1, and send/ 2, which
areto behave like the corresponding functionsin gl obal . Thus, { vi a, gl obal , @ obal Nane} isthe same
as{ gl obal , d obal Nane}.

start _opt() =
{timeout, Time :: timeout()} |
{spawn_opt, [proc lib:start spawn option()]} |
enter loop opt()

Optionsthat can be used when starting agen_st at emserver through, for example, st art _| i nk/ 3.
start ret() = {ok, pid()} | ignore | {error, term()}
Return valuefromthestart () andstart _| i nk() functions, for example, start _| i nk/ 3.

start mon ret() =
{ok, {pid(), reference()}} | ignore | {error, term()}

Return valuefromthest art _noni t or () functions.

enter loop opt() =
{hibernate after, HibernateAfterTimeout :: timeout()} |
{debug, Dbgs :: [sys:debug option()]}

Optionsthat can be used when starting agen_st at emserver through, ent er _| oop/ 4- 6.
hi bernate_after

Hi ber nat eAft er Ti meout gspecifies that the gen_statem process awats any message for
Hi ber nat eAf t er Ti meout milliseconds and if no message is received, the process goes into hibernation
automatically (by caling proc_I1 i b: hi ber nat e/ 3).

debug
For every entry in Dbgs, the corresponding function in sys is called.
from() = {To :: pid(), Tag :: term()}

Destination to use when replying through, for example, theacti on() {reply, From Repl y} to aprocess that
has calledthegen_st at emserver usingcal | / 2.

state() = state name() | term()

If the callback modeishandl e_event _f uncti on, thestatecan beany term. After astate change (Next St at e
=/ = St at e), all postponed events are retried.

256 | Ericsson AB. All Rights Reserved.: STDLIB

gen_statem

state name() = atom()

If the callback modeisst at e_f unct i ons, the state must be an atom. After a state change (Next St ate =/ =
St at e), al postponed events are retried. Note that the statet er mi nat e isnot possibleto use sinceit would collide
with the optional callback function Modul e: t er m nat e/ 3.

data() = term()

A term in which the state machine implementation isto store any server datait needs. The difference between thisand
thest at e() itself isthat a change in this data does not cause postponed events to be retried. Hence, if achangein
this data would change the set of eventsthat are handled, then that dataitem is to be made a part of the state.

event type() =
external event type() | timeout event type() | internal

There are 3 categories of events: external, timeout, and i nt er nal .
i nt ernal eventscan only be generated by the state machine itself through the transition action next _event .
external _event type() = {call, From :: from()} | cast | info

External events are of 3 types: {cal | , Fron}, cast, or i nfo. Type cal | originates from the APl functions
cal | /2 and send_r equest/ 2. For calls, the event contains whom to reply to. Type cast originates from the
API function cast / 2. Typei nf o originates from regular process messages sent to the gen_st at em

timeout event type() =
timeout | {timeout, Name :: term()} | state timeout

There are 3 types of time-out events that the state machine can generate for itself with the corresponding
timeout_action()s.

callback mode result() =
callback mode() | [callback mode() | state enter()]

Thisisthereturn typefrom Modul e: cal | back_node/ 0 and selects callback mode and whether to do state enter
calls, or not.

callback mode() = state functions | handle_event function
The callback modeis selected with the return value from Modul e: cal | back_node/ O:
state_functions

The state must be of type state name() and one calback function per state, that s,
Modul e: St at eNane/ 3, is used.

handl e_event _functi on
The state can be any term and the callback function Modul e: handl e_event / 4 isused for all states.

Thefunction Mbdul e: cal | back_nbde/ 0 iscalled when starting the gen_st at em after code change and after
changing the callback module with any of theactionschange_cal | back_nodul e,push_cal | back_rnodul e
or pop_cal | back_nodul e. Theresult is cached for subsequent callsto state callbacks.

state enter() = state enter

Whether the state machine should use state enter calls or not is selected when starting the gen_st at emand after
code change using the return value from Modul e: cal | back_node/ 0.

If Modul e: cal | back_nbde/ 0 returns a list containing st at e_ent er, the gen_st at em engine will, at
every state change, call the state callback with arguments (enter, O dState, Data) or (enter,
A dsState, State, Data), depending on the callback mode. This may look like an event but is realy
a call performed after the previous state callback returned and before any event is delivered to the new state
callback. SeeMbdul e: St at eNane/ 3 andModul e: handl e_event / 4. Suchacall can berepeated by returning
arepeat _stateorrepeat_state_and_dat a tuple from the state callback.

Ericsson AB. All Rights Reserved.: STDLIB | 257

gen_statem

If Modul e: cal | back_node/ 0 does not return such alist, no state enter calls are done.

If Modul e: code_change/ 4 should transform the state, it is regarded as a state rename and not a state change,
which will not cause a state enter call.

Note that a state enter call will be done right before entering the initial state even though this actually is not a state
change. Inthiscased dSt at e =: = St at e, which cannot happen for a subsequent state change, but will happen
when repeating the state enter call.

transition option() =
postpone() |
hibernate() |
event timeout() |
generic timeout() |
state timeout()

Transition options can be set by actions and modify the state transition. The state transition takes place when the
state callback has processed an event and returns. Here are the sequence of steps for a state transition:

» All returned actions are processed in order of appearance. In this step al replies generated by any
reply_action() aresent. Other actionssett ransi ti on_opti on() sthat comeinto play in subsequent
steps.

o If state enter calls are used, and either it is the initial state or one of the calback results
repeat _state_and data or repeat _state_and_dat a is used the gen_st at emengine calls the
current state callback with arguments (enter, State, Data) or(enter, State, State, Data)
(depending on callback mode) and when it returns starts again from the top of this sequence.

If state enter calls are used, and the state changes the gen_ st at emengine calls the new state callback with
arguments (enter, O dState, Data) or(enter, OdState, State, Data) (depending on
callback mode) and when it returns starts again from the top of this sequence.

« If post pone() istrue,thecurrent event is postponed.

« |f thisisastate change, the queue of incoming eventsis reset to start with the oldest postponed.

* All eventsstored withact i on() next _event areinserted to be processed before previously queued events.

« Timeouttimersevent timeout(),generic_tineout() andstate_tineout () arehandled. Time-
outs with zero time are guaranteed to be delivered to the state machine before any external not yet received event
so if thereis such atime-out requested, the corresponding time-out zero event is enqueued as the newest received
event; that is after already queued events such as inserted and postponed events.

Any event cancels an event _ti meout () so azero time event time-out is only generated if the event queue
is empty.

A state change cancelsast at e_t i neout () and any new transition option of this type belongs to the new
state, that is; ast at e_t i neout () appliesto the state the state machine enters.

« |f thereare enqueued eventsthe state callback for the possibly new stateis called with the oldest enqueued event,
and we start again from the top of this sequence.

e Otherwise the gen_st at emgoesinto r ecei ve or hibernation (if hi ber nat e() istrue) to wait for the
next message. |n hibernation the next non-system event awakensthe gen_st at em or rather the next incoming
message awakens the gen_st at em but if it is a system event it goes right back into hibernation. When a new
message arrives the state callback is called with the corresponding event, and we start again from the top of this
sequence.

postpone() = boolean()

If t r ue, postpones the current event and retriesit after astate change (Next St at e =/ = St at e).

258 | Ericsson AB. All Rights Reserved.: STDLIB

gen_statem

hibernate() = boolean()

If t r ue, hibernatesthe gen_st at emby calling pr oc_I i b: hi ber nat e/ 3 before going intor ecei ve to wait
for anew external event.

If there are enqueued events to process when hibrnation is requested, this is optimized by not hibernating but
instead calling er | ang: gar bage_col | ect/ 0 to simulate that the gen_st at ementered hibernation and
immediately got awakened by an enqueued event.

event timeout() = timeout() | integer()

Starts a timer set by enter_action() timeout. When the timer expires an event of event _type()
ti meout will begenerated. Seeer| ang: start _ti ner/ 4 for how Ti me and Opt i ons are interpreted. Future
erlang: start _timer/4 Opti ons will not necessarily be supported.

Any event that arrives cancels this time-out. Note that a retried or inserted event counts as arrived. So does a state
time-out zero event, if it was generated before this time-out is requested.

If Ti meisi nfinity,notimerisstarted, asit never would expire anyway.

If Ti me isrelative and O no timer is actually started, instead the the time-out event is enqueued to ensure that it gets
processed before any not yet received external event, but after already queued events.

Note that it is not possible nor needed to cancel thistime-out, asit is cancelled automatically by any other event.
generic timeout() = timeout() | integer()

Startsatimer setby ent er _acti on() {ti meout, Nane} . Whenthetimer expiresan event of event _t ype()
{timeout, Nanme} will be generated. See erl ang: start _tiner/4 for how Ti me and Opti ons are
interpreted. Futureer | ang: start _ti ner/ 4 Opti ons will not necessarily be supported.

If Ti neisi nfinity, notimerisstarted, asit never would expire anyway.

If Ti me isrelative and O no timer is actually started, instead the the time-out event is enqueued to ensure that it gets
processed before any not yet received external event.

Setting a timer with the same Nane while it is running will restart it with the new time-out value. Therefore it is
possible to cancel a specific time-out by settingittoi nfinity.

state timeout() = timeout() | integer()

Startsatimer set by ent er _action() state_ti nmeout.Whenthetimer expiresan event of event _type()
state_tinmeout will begenerated. Seeer | ang: start _ti ner/ 4forhow Ti ne and Opt i ons areinterpreted.
Futureer | ang: start _ti mer/ 4 Opti ons will not necessarily be supported.

If Ti meisi nfinity,notimerisstarted, asit never would expire anyway.

If Ti me isrelative and O no timer is actually started, instead the the time-out event is enqueued to ensure that it gets
processed before any not yet received external event.

Setting this timer while it is running will restart it with the new time-out value. Therefore it is possible to cancel this
time-out by settingittoi nfinity.

timeout option() = {abs, Abs :: boolean()}

If Abs is true an absolute timer is started, and if it is fal se a relative, which is the default. See
erlang: start _timer/ 4 for details.

action() =
postpone |
{postpone, Postpone :: postpone()} |

Ericsson AB. All Rights Reserved.: STDLIB | 259

gen_statem

{next_event,

EventType :: event type(),

EventContent :: term()} |

{change_callback module, NewModule :: module(
{push_callback module, NewModule :: module()}
pop_callback module |
enter _action()

)}
|

These transition actions can be invoked by returning them from the state callback when it is called with an event,
from Modul e: i ni t/ 1 or by givingthemtoent er _| oop/ 5, 6.

Actions are executed in the containing list order.

Actions that set transition options override any previous of the same type, so the last in the containing list wins. For
example, the last post pone() overrides any previouspost pone() inthelist.

post pone

Sets the transi ti on_option() postpone() for this state transition. This action is ignored when
returned fromModul e: i nit/ 1 orgiventoent er | oop/ 5, 6, asthereisno event to postponein those cases.

next event

This action does not set any transi ti on_option() but instead stores the specified Event Type and
Event Cont ent for insertion after all actions have been executed.

The stored events are inserted in the queue as the next to process before any already queued events. The order of
these stored eventsis preserved, so thefirst next _event in the containing list becomes the first to process.

Anevent of typei nt er nal isto be used when you want to reliably distinguish an event inserted this way from
any external event.

change_cal | back_nodul e
Changes the callback module to Newivbdul e which will be used when calling all subsequent state callbacks.

The gen_statem engine will find out the callback mode of Newiwbdule by caling
Newivbdul e: cal | back _node/ 0 before the next state callback.

Changing the callback module does not affect the state transition in any way, it only changes which module
that handles the events. Be aware that all relevant callback functionsin Newibdul e such as the state callback,
NewMbdul e: code_change/ 4, Newibdul e: f or mat _st at us/ 2 and NewModul e: terni nate/ 3
must be able to handle the state and data from the old module.

push_cal | back_nodul e

Pushes the current callback module to the top of an internal stack of callback modules and changes the callback
module to Newbdul e. Otherwiselike{ change_cal | back_nodul e, NewiModul e} above.

pop_cal | back_nodul e
Pops the top module from the internal stack of callback modules and changes the callback module to be the
popped module. If the stack is empty the server fails. Otherwiselike{ change_cal | back_nodul e,
Newibdul e} above.

enter _action() =
hibernate |
{hibernate, Hibernate :: hibernate()} |
timeout action() |
reply action()

These transition actions can be invoked by returning them from the state callback, from Mbdul e: i ni t/ 1 or by
givingthemtoent er _| oop/ 5, 6.

260 | Ericsson AB. All Rights Reserved.: STDLIB

gen_statem

Actions are executed in the containing list order.

Actions that set transition options override any previous of the same type, so the last in the containing list wins. For
example, thelast event _t i neout () overridesany previousevent _ti neout () inthelist.

hi ber nat e
Setsthetransi ti on_option() hi bernate() forthisstatetransition.

timeout action() =

(Time :: event timeout()) |
{timeout, Time :: event timeout(), EventContent :: term()} |
{timeout,

Time :: event timeout(),

EventContent :: term(),

Options :: timeout option() | [timeout option()]} |
{{timeout, Name :: term()},

Time :: generic timeout(),

EventContent :: term()} |

{{timeout, Name :: term()},

Time :: generic timeout(),

EventContent :: term(),

Options :: timeout option() | [timeout option()]} |
{state timeout,

Time :: state timeout(),

EventContent :: term()} |

{state timeout,

Time :: state timeout(),

EventContent :: term(),

Options :: timeout option() | [timeout option()]} |
timeout cancel action() |
timeout update action()

These transition actions can be invoked by returning them from the state callback, from Modul e: i ni t/ 1 or by
givingthemtoent er _| oop/ 5, 6.

These time-out actions sets time-out transition options.
Ti me
Shortfor{ti nmeout, Ti me, Ti ne}, thatis, thetime-out message isthetime-out time. Thisform existsto make
the state callback return value { next _st at e, Next St at e, NewDat a, Ti me} alowed likefor gen_f sm
ti meout

Sets the transiti on_option() event tinmeout() to Ti me with Event Cont ent and time-out
optionsOpt i ons.

{tineout, Nane}

Setsthetransiti on_option() generic_tinmeout () toTi me for Nane with Event Cont ent and
time-out options Opt i ons.

state_tineout

Sets the transiti on_option() state_timeout() to Ti me with Event Cont ent and time-out
options Opt i ons.

timeout cancel action() =
{timeout, cancel} |
{{timeout, Name :: term()}, cancel} |

Ericsson AB. All Rights Reserved.: STDLIB | 261

gen_statem

{state timeout, cancel}
Thisisashorter and clearer form of timeout_action() with Ti ne = i nfi ni t y which cancelsatime-out.

timeout update action() =
{timeout, update, EventContent :: term()} |
{{timeout, Name :: term()}, update, EventContent :: term()} |
{state_timeout, update, EventContent :: term()}

Updates atime-out with anew Event Cont ent . Seetimeout_action() for how to start atime-out.

If no time-out of the sametypeisactiveinstead insert the time-out event just like when starting atime-out with relative
Time = 0.

reply action() = {reply, From :: from(), Reply :: term()}

Thistransition action can be invoked by returning it from the state callback, from Modul e: i ni t/ 1 or by giving
ittoenter_| oop/ 5, 6.

It doesnot set any t ransi tion_opti on() butinstead repliesto a caller waiting for areply incal | / 2. Fr om
must be the term from argument { cal | , Fr on} inacall to a state callback.

Notethat using thisactionfromMbdul e: i nit/ 1 orent er _| oop/ 5, 6 would beweird ontheborder of witchcraft
since there has been no earlier call to astate callback in this server.

init result(StateType) = init result(StateType, term())
init result(StateType, DataType) =

{ok, State :: StateType, Data :: DataType} |

{ok,

State :: StateType,

Data :: DataType,

Actions :: [action()] | action()} |
ignore |
{stop, Reason :: term()}

For a succesful initialization, St at e is the initial state() and Data the initial server data() of the
gen_statem

TheAct i ons areexecuted when entering thefirst statejust asfor astate callback, except that the action post pone
isforcedtof al se sincethereis no event to postpone.

For an unsuccesful initiaization, { st op, Reason} ori gnor e should beused; seestart _|i nk/ 3, 4.

state enter result(State) = state enter result(State, term())

state enter result(State, DataType) =
{next state, State, NewData :: DataType} |
{next_state, State,
NewDa